Paths and Tableaux Descriptions of Jacobi–Trudi Determinant Associated with Quantum Affine Algebra of Type $C_n$
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Jacobi–Trudi-type determinant which is conjectured to be the $q$-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type $C_n$. Like the $D_n$ case studied by the authors recently, applying the Gessel–Viennot path method with an additional involution and a deformation of paths, we obtain an expression by apositive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
Keywords: quantum group; $q$-character; lattice path; Young tableau.
@article{SIGMA_2007_3_a77,
     author = {Wakako Nakai and Tomoki Nakanishi},
     title = {Paths and {Tableaux} {Descriptions} of {Jacobi{\textendash}Trudi} {Determinant} {Associated} with {Quantum} {Affine} {Algebra} of {Type} $C_n$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a77/}
}
TY  - JOUR
AU  - Wakako Nakai
AU  - Tomoki Nakanishi
TI  - Paths and Tableaux Descriptions of Jacobi–Trudi Determinant Associated with Quantum Affine Algebra of Type $C_n$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a77/
LA  - en
ID  - SIGMA_2007_3_a77
ER  - 
%0 Journal Article
%A Wakako Nakai
%A Tomoki Nakanishi
%T Paths and Tableaux Descriptions of Jacobi–Trudi Determinant Associated with Quantum Affine Algebra of Type $C_n$
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a77/
%G en
%F SIGMA_2007_3_a77
Wakako Nakai; Tomoki Nakanishi. Paths and Tableaux Descriptions of Jacobi–Trudi Determinant Associated with Quantum Affine Algebra of Type $C_n$. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a77/

[1] Bazhanov V. V., Reshetikhin N., “Restricted solid-on-solid models connected with simply laced algebras and conformal field theory”, J. Phys. A: Math. Gen., 23 (1990), 1477–1492 | DOI | MR | Zbl

[2] Chari V., Moura A., “Characters of fundamental representations of quantum affine algebras”, Acta Appl. Math., 90 (2006), 43–63 ; math.RT/0503020 | DOI | MR | Zbl

[3] Chari V., Pressley A., “Quantum affine algebras”, Comm. Math. Phys., 142 (1991), 261–283 | DOI | MR | Zbl

[4] Drinfel'd V., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet. Math. Dokl., 32 (1985), 254–258 | MR

[5] Drinfel'd V., “A new realization of Yangians and quantized affine algebras”, Soviet. Math. Dokl., 36 (1988), 212–216 | MR

[6] Frenkel E., Mukhin E., “Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras”, Comm. Math. Phys., 216 (2001), 23–57 ; math.QA/9911112 | DOI | MR | Zbl

[7] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $W$-algebras”, Recent developments in quantum affine algebras and related topics, Contemp. Math., 248, American Mathematical Society, Providence, RI, 1999, 163–205 ; math.QA/9810055 | MR | Zbl

[8] Gessel I., Viennot G., “Binomial determinants, paths, and hook length formulae”, Adv. in Math., 58 (1985), 300–321 | DOI | MR | Zbl

[9] Hernandez D., “The Kirillov–Reshetikhin conjecture and solutions of $T$-systems”, J. Reine Angew. Math., 596 (2006), 63–87 ; math.QA/0501202 | MR | Zbl

[10] Hernandez D., “On minimal affinizations of representations of quantum groups”, Comm. Math. Phys., 276:1 (2007), 221–259 ; math.QA/0607527 | DOI | MR | Zbl

[11] Jimbo M., “A $q$-difference analogue of $U(\mathfrak g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[12] Kashiwara M., Nakashima T., “Crystal graphs for representations of the $q$-analogue of classical Lie algebras”, J. Algebra, 165 (1994), 295–345 | DOI | MR | Zbl

[13] Kirillov A. N., Reshetikhin N., “Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor' product of representations of simple Lie algebras”, J. Sov. Math., 52 (1990), 3156–3164 | DOI | MR

[14] Kuniba A., Nakanishi T., “The Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities. II. The $X_n$ case”, J. Algebra, 251 (2002), 577–618 ; math.QA/0008047 | DOI | MR | Zbl

[15] Kuniba A., Nakanishi T., Suzuki J., “Functional relations in solvable lattice models. I. Functional relations and representation theory”, Internat. J. Modern Phys. A, 9 (1994), 5215–5266 ; hep-th/9309137 | DOI | MR | Zbl

[16] Kuniba A., Nakamura S., Hirota R., “Pfaffian and determinant solutions to a discretized Toda equation for $B_r$, $C_r$, and $D_r$”, J. Phys. A: Math. Gen., 29 (1996), 1759–1766 ; hep-th/9509039 | DOI | MR | Zbl

[17] Kuniba A., Ohta Y., Suzuki J., “Quantum Jacobi–Trudi and Giambelli formulae for $U_q(B^{(1)}_r)$ from the analytic Bethe ansatz”, J. Phys. A: Math. Gen., 28 (1995), 6211–6226 ; hep-th/9506167 | DOI | MR | Zbl

[18] Kuniba A., Okado M., Suzuki J., Yamada Y., “Difference $L$ operators related to $q$-characters”, J. Phys. A: Math. Gen., 35 (2002), 1415–1435 ; math.QA/0109140 | DOI | MR | Zbl

[19] Kuniba A., Suzuki J., “Analytic Bethe ansatz for fundamental representations of Yangians”, Comm. Math. Phys., 173 (1995), 225–264 ; hep-th/9406180 | DOI | MR | Zbl

[20] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[21] Nakajima H., “$t$-analogs of $q$-characters of quantum affine algebras of type $A_n$ and $D_n$”, Combinatorial and geometric representation theory, Contemp. Math., 325, American Mathematical Society, Providence, RI, 2003, 141–160 ; math.QA/0204184 | MR | Zbl

[22] Nakajima H., “$t$-analogs of $q$-characters of Kirillov–Reshetikhin modules of quantum affine algebras”, Represent. Theory, 7 (2003), 259–274 ; math.QA/0204185 | DOI | MR | Zbl

[23] Nakai W., Nakanishi T., “Paths, tableaux and $q$-characters of quantum affine algebras: the $C_n$ case”, J. Phys. A: Math. Phys., 39 (2006), 2083–2115 ; math.QA/0502041 | DOI | MR | Zbl

[24] Nakai W., Nakanishi T., “Paths and tableaux descriptions of Jacobi–Trudi determinant associated with quantum affine algebra of type $D_n$”, J. Algebraic Combin., 26:2 (2007), 253–290 ; math.QA/0603160 | DOI | MR | Zbl

[25] Okado M., Schilling A., Shimozono M., “Virtual crystals and fermionic formulas of type $D_{n+1}^{(2)}$, $A_{2n}^{(2)}$, and $C_n^{(1)}$”, Represent. Theory, 7 (2003), 101–163 ; math.QA/0105017 | DOI | MR | Zbl

[26] Sagan B., The symmetric group, 2nd ed., Springer, 2000 | MR

[27] Tsuboi Z., “Difference $L$ operators and a Casorati determinant solution to the $T$-system for twisted quantum affine algebras”, J. Phys. A: Math. Gen., 35 (2002), 4363–4373 | DOI | MR | Zbl

[28] Tsubo Z., Kuniba A., “Solutions of a discretized Toda field equation for $D_r$ from analytic Bethe ansatz”, J. Phys. A: Math. Phys., 29 (1996), 7785–7796 ; hep-th/9608002 | DOI | MR | Zbl