@article{SIGMA_2007_3_a76,
author = {Mohammed Benalili and Azzedine Lansari},
title = {Global {Stability} of {Dynamic} {Systems} of {High} {Order}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a76/}
}
Mohammed Benalili; Azzedine Lansari. Global Stability of Dynamic Systems of High Order. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a76/
[1] Benalili M., Lansari A., “Ideal of finite codimension in contact Lie algebra”, J. Lie Theory, 11 (2001), 129–134 | MR | Zbl
[2] Benalili M., Lansari A., “Une propriété des idéaux de codimension finie en algèbre de Lie des champs de vecteurs”, J. Lie Theory, 15 (2005), 13–26 | MR
[3] Fenichel N., “Asymptotic stability with rate conditions”, Indiana Univ. Math. J., 23 (1973/1974), 1109–1137 | DOI | MR
[4] Gutierrez C., “A solution to the bidimensional global asymptotic stability conjecture”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 627–671 | MR | Zbl
[5] Hahn W., Stability of motions, Springer-Verlag, New York, 1967 | MR
[6] Libre J., Teixeria M., “Global asymptotic stability for a class of discontinuous vector fields in $\mathbb R^2$”, Dyn. Syst., 122 (2007), 133–146 | DOI | MR
[7] Shafer D. S., “Structure and stability of gradient polynomial vector fields”, J. London Math. Soc. (2), 41 (1990), 109–121 | DOI | MR | Zbl
[8] Meisters G. H., “Global stability of dynamical systems”, SIAM Rev., 31 (1989), 147–151 | DOI
[9] Zajtz A., “Global version of a Sternberg linearization theorem”, Roczik Nauk. Dydact. Prace Mat., 17 (2000), 265–269 | MR | Zbl
[10] Zajtz A., “Some division theorems for vector fields”, Ann. Polon. Math., 58 (1993), 19–28 | MR | Zbl