Global Stability of Dynamic Systems of High Order
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with global asymptotic stability of prolongations of flows induced by specific vector fields and their prolongations. The method used is based on various estimates of the flows.
Keywords: global stability; vector fields; prolongations of flows.
@article{SIGMA_2007_3_a76,
     author = {Mohammed Benalili and Azzedine Lansari},
     title = {Global {Stability} of {Dynamic} {Systems} of {High} {Order}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a76/}
}
TY  - JOUR
AU  - Mohammed Benalili
AU  - Azzedine Lansari
TI  - Global Stability of Dynamic Systems of High Order
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a76/
LA  - en
ID  - SIGMA_2007_3_a76
ER  - 
%0 Journal Article
%A Mohammed Benalili
%A Azzedine Lansari
%T Global Stability of Dynamic Systems of High Order
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a76/
%G en
%F SIGMA_2007_3_a76
Mohammed Benalili; Azzedine Lansari. Global Stability of Dynamic Systems of High Order. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a76/

[1] Benalili M., Lansari A., “Ideal of finite codimension in contact Lie algebra”, J. Lie Theory, 11 (2001), 129–134 | MR | Zbl

[2] Benalili M., Lansari A., “Une propriété des idéaux de codimension finie en algèbre de Lie des champs de vecteurs”, J. Lie Theory, 15 (2005), 13–26 | MR

[3] Fenichel N., “Asymptotic stability with rate conditions”, Indiana Univ. Math. J., 23 (1973/1974), 1109–1137 | DOI | MR

[4] Gutierrez C., “A solution to the bidimensional global asymptotic stability conjecture”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 627–671 | MR | Zbl

[5] Hahn W., Stability of motions, Springer-Verlag, New York, 1967 | MR

[6] Libre J., Teixeria M., “Global asymptotic stability for a class of discontinuous vector fields in $\mathbb R^2$”, Dyn. Syst., 122 (2007), 133–146 | DOI | MR

[7] Shafer D. S., “Structure and stability of gradient polynomial vector fields”, J. London Math. Soc. (2), 41 (1990), 109–121 | DOI | MR | Zbl

[8] Meisters G. H., “Global stability of dynamical systems”, SIAM Rev., 31 (1989), 147–151 | DOI

[9] Zajtz A., “Global version of a Sternberg linearization theorem”, Roczik Nauk. Dydact. Prace Mat., 17 (2000), 265–269 | MR | Zbl

[10] Zajtz A., “Some division theorems for vector fields”, Ann. Polon. Math., 58 (1993), 19–28 | MR | Zbl