The Veldkamp Space of Two-Qubits
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, $W(2)$, it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space over the Galois field with two elements – the so-called Veldkamp space of $W(2)$. An intriguing novelty is the recognition of (uni- and tri-centric) triads and specific pentads of the Pauli operators in addition to the "classical" subsets answering to geometric hyperplanes of $W(2)$.
Keywords: generalized quadrangles; Veldkamp spaces; Pauli operators of two-qubits.
@article{SIGMA_2007_3_a74,
     author = {Metod Saniga and Michel Planat and Petr Pracna and Hans Havlicek},
     title = {The {Veldkamp} {Space} of {Two-Qubits}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a74/}
}
TY  - JOUR
AU  - Metod Saniga
AU  - Michel Planat
AU  - Petr Pracna
AU  - Hans Havlicek
TI  - The Veldkamp Space of Two-Qubits
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a74/
LA  - en
ID  - SIGMA_2007_3_a74
ER  - 
%0 Journal Article
%A Metod Saniga
%A Michel Planat
%A Petr Pracna
%A Hans Havlicek
%T The Veldkamp Space of Two-Qubits
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a74/
%G en
%F SIGMA_2007_3_a74
Metod Saniga; Michel Planat; Petr Pracna; Hans Havlicek. The Veldkamp Space of Two-Qubits. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a74/

[1] Saniga M., Planat M., Pracna P., “Projective ring line encompassing two-qubits”, Theor. Math. Phys., 155:3 (2008), 905–913 ; quant-ph/0611063 | DOI | MR | Zbl

[2] Saniga M., Planat M., “Multiple qubits and symplectic polar spaces of order two”, Adv. Studies Theor. Phys., 1 (2007), 1–4 ; quant-ph/0612179 | MR | Zbl

[3] Planat M., Saniga M., On the Pauli graph of $N$-qudits, quant-ph/0701211

[4] Payne S. E., Thas J. A., Finite generalized quadrangles, Pitman, Boston – London – Melbourne, 1984 | MR | Zbl

[5] Buekenhout F., Cohen A. M., Diagram geometry (Chapter 10.2), to appear, Springer, New York | MR

[6] Ronan M. A., “Embeddings and hyperplanes of discrete geometries”, European J. Combin., 8 (1987), 179–185 | MR | Zbl

[7] Shult E., “On Veldkamp lines”, Bull. Belg. Math. Soc., 4 (1997), 299–316 | MR | Zbl

[8] Hirschfeld J. W. P., Thas J. A., General Galois geometries, Oxford University Press, Oxford, 1991 | MR

[9] Lawrence J., Brukner C., Zeilinger A., “Mutually unbiased binary observable sets on $N$ qubits”, Phys. Rev. A, 65 (2002), 032320, 5 pp., ages ; quant-ph/0104012 | DOI

[10] Saniga M., Planat M., Rosu H., “Mutually unbiased bases and finite projective planes”, J. Opt. B: Quantum Semiclass. Opt., 6 (2004), L19–L20 ; math-ph/0403057 | DOI | MR

[11] Saniga M., Planat M., Minarovjech M., “Projective line over the finite quotient ring $GF(2)[x]/(x^3-x)$ and quantum entanglement: the Mermin “magic” square/pentagram”, Theor. Math. Phys., 151:2 (2007), 625–631 ; quant-ph/0603206 | DOI | MR | Zbl

[12] Planat M., Saniga M., “Pauli graph and finite projective lines/geometries”, Proc. SPIE, 6583 (2007), 65830W ; quant-ph/0703154 | DOI

[13] Thas K., Pauli operators of $N$-qubit Hilbert spaces and the Saniga–Planat conjecture, Chaos Solitons Fractals, to appear

[14] Thas K., The geometry of generalized Pauli operators of $N$-qudit Hilbert space, submitted