@article{SIGMA_2007_3_a72,
author = {K. M. Tamizhmani and Basil Grammaticos and Alfred Ramani},
title = {Do {All} {Integrable} {Evolution} {Equations} {Have} the {Painlev\'e} {Property?}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a72/}
}
TY - JOUR AU - K. M. Tamizhmani AU - Basil Grammaticos AU - Alfred Ramani TI - Do All Integrable Evolution Equations Have the Painlevé Property? JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a72/ LA - en ID - SIGMA_2007_3_a72 ER -
%0 Journal Article %A K. M. Tamizhmani %A Basil Grammaticos %A Alfred Ramani %T Do All Integrable Evolution Equations Have the Painlevé Property? %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a72/ %G en %F SIGMA_2007_3_a72
K. M. Tamizhmani; Basil Grammaticos; Alfred Ramani. Do All Integrable Evolution Equations Have the Painlevé Property?. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a72/
[1] Zabusky N. J., Kruskal M. D., “Interaction of solitons in a collisionless plasma and the recurrence of ther initial state”, Phys. Rev. Lett., 15 (1965), 240–243 | DOI
[2] Calogero F., Degasperis A., Spectral transforms and solitons, North-Holland, Amsterdam, 1982 | MR | Zbl
[3] Ablowitz M. J., Ramani A., Segur H., “Nonlinear evolution equations and ordinary differential equations of Painlevé type”, Lett. Nuov. Cim., 23 (1978), 333–338 | DOI | MR
[4] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[5] Jimbo M., Kruskal M. D., Miwa T., “Painlevé test for self-dual Yang–Mills equation”, Phys. Lett. A, 92 (1982), 59–60 | DOI | MR
[6] Grammaticos B., Ramani A., Papageorgiou V., “Do integrable mappings have the Painlevé property?”, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[7] Ablowitz M. J., Halburd R., Herbst B., “On the extension of the Painlevé property to difference equations”, Nonlinearity, 13 (2000), 889–905 | DOI | MR | Zbl
[8] Hietarinta J., Viallet C. M., “Singularity confinement and chaos in discrete systems”, Phys. Rev. Lett., 81 (1991), 325–328 | DOI | MR
[9] Grammaticos B., Tamizhmani T., Ramani A., Tamizhmani K. M., “Growth and integrability in discrete systems”, J. Phys. A: Math. Gen., 34 (2001), 3811–3821 | DOI | MR | Zbl
[10] Hietarinta J., Viallet C. M., Searching for integrable lattice maps using factorization, arXiv:0705.1903 | MR
[11] Ramani A., Grammaticos B., Tremblay S., “Integrable systems without the Painlevé property”, J. Phys. A: Math. Gen., 33 (2000), 3045–3052 | DOI | MR | Zbl
[12] Chazy J., “Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale à ses points critiques fixes”, Acta Math., 34 (1911), 317–385 | DOI | MR | Zbl
[13] Ince E. L., Ordinary differential equations, Dover, London, 1956 | MR
[14] Ramani A., Grammaticos B., Tamizhmani K. M., Lafortune S., “Again, linearisable mappings”, Physica A, 252 (1998), 138–150 | DOI | MR | Zbl
[15] Tsuda T., Ramani A., Grammaticos B., Takenawa T., A class of integrable and nonintegrable mappings and their dynamics, Preprint, 2007 | MR
[16] Ramani A., Grammaticos B., Karra G., “Linearisable mappings”, Physica A, 181 (1992), 115–127 | DOI | MR
[17] Calogero F., “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?, ed. V. E. Zakharov, Springer, New York, 1990, 1–62 | MR