Skew Divided Difference Operators and Schubert Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with positive integer coefficients.
Keywords: divided differences; nilCoxeter algebras; Schubert polynomials.
@article{SIGMA_2007_3_a71,
     author = {Anatol N. Kirillov},
     title = {Skew {Divided} {Difference} {Operators} and {Schubert} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a71/}
}
TY  - JOUR
AU  - Anatol N. Kirillov
TI  - Skew Divided Difference Operators and Schubert Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a71/
LA  - en
ID  - SIGMA_2007_3_a71
ER  - 
%0 Journal Article
%A Anatol N. Kirillov
%T Skew Divided Difference Operators and Schubert Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a71/
%G en
%F SIGMA_2007_3_a71
Anatol N. Kirillov. Skew Divided Difference Operators and Schubert Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a71/

[1] Bergeron N., Sottile F., “Skew Schubert functions and the Pieri formula for flag manifolds”, Trans. Amer. Math. Soc., 354:2 (2002), 651–673 ; alg-geom/9709034 | DOI | MR | Zbl

[2] Chen W., Yan G.-G., Yang A., “The skew Schubert polynomials”, European J. Combin., 25 (2004), 1181–1196 | DOI | MR | Zbl

[3] Fomin S., Kirillov A. N., “The Yang–Baxter equation, symmetric functions and Schubert polynomials”, Discrete Math., 53 (1996), 123–143 | DOI | MR

[4] Fomin S., Kirillov A. N., “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progr. Math., 172, eds. J.-L. Brylinski and R. Brylinski, 1999, 147–182 | MR | Zbl

[5] Fomin S., Stanley R., “Schubert polynomials and nilCoxeter algebra”, Adv. Math., 103 (1994), 196–207 | DOI | MR | Zbl

[6] Kirillov A. N., “On some quadratic algebras: Jucys–Murphy and Dunkl elements”, Calogero–Moser–Sutherland models (1997, Montrèal, QC), CRM Ser. Math. Phys., Springer, New York, 2000, 231–248 ; q-alg/9705003 | MR

[7] Kogan M., “RC-graphs and a generalized Littlewood–Richardson rule”, Int. Math. Res. Not., 15 (2001), 765–782 ; math.CO/0010108 | DOI | MR | Zbl

[8] Kohnert A., “Multiplication of a Schubert polynomial by a Schur polynomial”, Ann. Comb., 1 (1997), 367–375 | DOI | MR | Zbl

[9] Lascoux A., Schützenberger M.-P., “Polynômes de Schubert”, C. R. Acad. Sci. Paris Ser. I Math., 294 (1982), 447–450 | MR | Zbl

[10] Lenart C., Sottile F., “Skew Schubert functions and the Pieri formula for flag manifolds”, Trans. Amer. Math. Soc., 354 (2002), 651–673 | DOI | MR

[11] Macdonald I. G., Notes on Schubert polynomials, Publ. LACIM, Univ. du Quebec à Montréal, 1991 | MR

[12] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Univ. Press, New York–London, 1995 | MR | Zbl