@article{SIGMA_2007_3_a71,
author = {Anatol N. Kirillov},
title = {Skew {Divided} {Difference} {Operators} and {Schubert} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a71/}
}
Anatol N. Kirillov. Skew Divided Difference Operators and Schubert Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a71/
[1] Bergeron N., Sottile F., “Skew Schubert functions and the Pieri formula for flag manifolds”, Trans. Amer. Math. Soc., 354:2 (2002), 651–673 ; alg-geom/9709034 | DOI | MR | Zbl
[2] Chen W., Yan G.-G., Yang A., “The skew Schubert polynomials”, European J. Combin., 25 (2004), 1181–1196 | DOI | MR | Zbl
[3] Fomin S., Kirillov A. N., “The Yang–Baxter equation, symmetric functions and Schubert polynomials”, Discrete Math., 53 (1996), 123–143 | DOI | MR
[4] Fomin S., Kirillov A. N., “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progr. Math., 172, eds. J.-L. Brylinski and R. Brylinski, 1999, 147–182 | MR | Zbl
[5] Fomin S., Stanley R., “Schubert polynomials and nilCoxeter algebra”, Adv. Math., 103 (1994), 196–207 | DOI | MR | Zbl
[6] Kirillov A. N., “On some quadratic algebras: Jucys–Murphy and Dunkl elements”, Calogero–Moser–Sutherland models (1997, Montrèal, QC), CRM Ser. Math. Phys., Springer, New York, 2000, 231–248 ; q-alg/9705003 | MR
[7] Kogan M., “RC-graphs and a generalized Littlewood–Richardson rule”, Int. Math. Res. Not., 15 (2001), 765–782 ; math.CO/0010108 | DOI | MR | Zbl
[8] Kohnert A., “Multiplication of a Schubert polynomial by a Schur polynomial”, Ann. Comb., 1 (1997), 367–375 | DOI | MR | Zbl
[9] Lascoux A., Schützenberger M.-P., “Polynômes de Schubert”, C. R. Acad. Sci. Paris Ser. I Math., 294 (1982), 447–450 | MR | Zbl
[10] Lenart C., Sottile F., “Skew Schubert functions and the Pieri formula for flag manifolds”, Trans. Amer. Math. Soc., 354 (2002), 651–673 | DOI | MR
[11] Macdonald I. G., Notes on Schubert polynomials, Publ. LACIM, Univ. du Quebec à Montréal, 1991 | MR
[12] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Univ. Press, New York–London, 1995 | MR | Zbl