@article{SIGMA_2007_3_a7,
author = {Michael P. Tuite},
title = {The {Virasoro} {Algebra} and {Some} {Exceptional} {Lie} and {Finite} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a7/}
}
Michael P. Tuite. The Virasoro Algebra and Some Exceptional Lie and Finite Groups. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a7/
[1] Borcherds R., “Vertex algebras, Kac–Moody algebras and the Monster”, Proc. Natl. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR | Zbl
[2] Deligne P., “La série exceptionnelle de groupes de Lie (The exceptional series of Lie groups)”, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 321–326 | MR | Zbl
[3] Dong C., Mason G., “Holomorphic vertex operator algebras of small central charge”, Pacific J. Math., 213 (2004), 253–266 ; math.QA/0203005 | DOI | MR | Zbl
[4] Frenkel I., Huang Y-Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., no. 494, 1993, 64 pp. | MR
[5] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Academic Press, New York, 1988 | MR
[6] Griess R. L., “The vertex operator algebra related to $E_8$ with automorphism group $O^+(10,2)$”, The Monster and Lie algebras (1996, Columbus, Ohio State University), Math. Res. Inst. Public., 7, de Gruyter, Berlin, 1998 | MR | Zbl
[7] Hoehn G., “Selbstduale Vertexoperatorsuperalgebren und das Babymonster”, Dissertation, Rheinische Friedrich-Wilhelms-Universitat Bonn (Bonn, 1995), Bonn. Math. Sch., 286, Universität Bonn Mathematisches Institut, Bonn, 1996, 1–85 | MR
[8] Kac V., Vertex operator algebras for beginners, University Lecture Series, 10, AMS, Boston, 1998 | Zbl
[9] Kac V., Raina A. K., Bombay lectures on highest weight representations of infinite dimensional Lie algebras, World Scientific, Singapore, 1987 | MR
[10] Li H., “Symmetric invariant bilinear forms on vertex operator algebras”, J. Pure Appl. Algebra, 96 (1994), 279–297 | DOI | MR | Zbl
[11] Matsuo A., “Norton's trace formula for the Griess algebra of a vertex operator algebra with large symmetry”, Comm. Math. Phys., 224 (2001), 565–591 ; math.QA/0007169 | DOI | MR
[12] Maruoka H., Matsuo A., Shimakura H., Trace form ulas for representations of simple Lie algebras via vertex operator algebras, unpublished preprint, 2005 | MR
[13] Matsuo A., Nagatomo K., Axioms for a vertex algebra and the locality of quantum fields, MSJ Memoirs, 4, Mathematical Society of Japan, Tokyo, 1999 ; hep-th/9706118 | MR
[14] Schellekens A. N., “Meromorphic $C=24$ conformal field theories”, Comm. Math. Phys., 153 (1993), 159–185 ; hep-th/9205072 | DOI | MR | Zbl
[15] Tuite M. P. (to appear)