@article{SIGMA_2007_3_a69,
author = {Joshua D. MacArthur and Raymond G. McLenaghan and Roman G. Smirnov},
title = {Hamilton{\textendash}Jacobi {Theory} and {Moving} {Frames}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a69/}
}
TY - JOUR AU - Joshua D. MacArthur AU - Raymond G. McLenaghan AU - Roman G. Smirnov TI - Hamilton–Jacobi Theory and Moving Frames JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a69/ LA - en ID - SIGMA_2007_3_a69 ER -
Joshua D. MacArthur; Raymond G. McLenaghan; Roman G. Smirnov. Hamilton–Jacobi Theory and Moving Frames. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a69/
[1] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[2] Eisenhart L. P., “Separable systems of Stäckel”, Ann. Math., 35 (1934), 284–305 | DOI | MR
[3] Fels M., Olver P. J., “Moving coframes. I. A practical algorithm”, Acta. Appl. Math., 51 (1998), 161–213 | DOI | MR
[4] Fels M., Olver P. J., “Moving coframes. II. Regularization and theoretical foundations”, Acta. Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[5] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Invariant classification of orthogonal separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 221 (2005), 679–709 ; math-ph/0605023 | DOI | MR
[6] Kuznetsov V. B., “Simultaneous separation for the Kowalevski and Goryachev–Chaplygin gyrostats”, J. Phys. A: Math. Gen., 35 (2002), 6419–6430 ; nlin.SI/0201004 | DOI | MR | Zbl
[7] MacArthur J. D., The equivalence problem in differential geometry, MSc thesis, Dalhousie University, 2005
[8] McLenaghan R. G., Smirnov R. G., The D., “Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the $O(4)$-symmetric Yang–Mills theories of Yatsun”, J. Math. Phys., 43 (2002), 1422–1440 | DOI | MR | Zbl
[9] McLenaghan R. G., Smirnov R. G., The D., “An extension of the classical theory of invariants to pseudo-Riemannian geometry and Hamiltonian mechanics”, J. Math. Phys., 45 (2004), 1079–1120 | DOI | MR | Zbl
[10] Olver P. J., Classical invariant theory, Student Texts, 44, London Mathematical Society, Cambridge University Press, 1999 | MR
[11] Palais R. S., A global formulation of the Lie theory of transportation groups, Memoirs Amer. Math. Soc., no. 22, AMS, Providence, R.I., 1957 | MR
[12] The D., Notes on complete sets of group-invariants in $\mathcal K^2(\mathbb R^2)$ and $\mathcal K^3(\mathbb R^2)$, unpublished, 2004