@article{SIGMA_2007_3_a67,
author = {Boyka Aneva},
title = {Hidden {Symmetries} of {Stochastic} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a67/}
}
Boyka Aneva. Hidden Symmetries of Stochastic Models. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a67/
[1] Schütz G. M., Exactly solvable models for many-body systems far from equilibrium, Phase transitions and critical phenomena, 19, Academic Press, London, 2001 | MR
[2] Schreckenber M., Schadschneider A., Nagel K., Ito N., “Discrete stochastic models for traffic flow”, Phys. Rev. E, 51 (1995), 2939–2949 ; cond-mat/9412045 | DOI
[3] Macdonald J. T., Gibbs J. H., Pipkin A. C., “Kinetics of biopolymerization on nucleic acid templates”, Biopolymers, 6 (1968), 1–25 | DOI
[4] Krug J., Spohn H., “Kinetic roughening of growing surfaces”, Solids Far from Equilibrium, ed. C. Godreche, Cambridge University Press, Cambridge, 1991, 412–525
[5] Sandow S., Schütz G. M., “On $U_q(SU(2))$-symmetric driven diffusion”, Europhys. Lett., 26 (1994), 7–12 ; cond-mat/9307027 | DOI | MR
[6] Derrida B., Evans M. R., Hakim V., Pasquier V., “Exact solution of a 1D asymmetric exclusion model using a matrix formulation”, J. Phys. A: Math. Gen., 26 (1993), 1493–1517 | DOI | MR | Zbl
[7] Derrida B., “An exactly soluble non-equilibrium system: the asymmetric simple exclusion process”, Phys. Rep., 301 (1998), 65–83, and references therein | DOI | MR
[8] Schuetz G. M., Domany E., “Phase transitions in an exactly soluble one-dimensional asymmetric exclusion model”, J. Stat. Phys., 72 (1993), 277–296 ; cond-mat/9303038 | DOI | Zbl
[9] Krug J., “Boundary-induced phase transitions in driven diffusive systems”, Phys. Rev. Lett., 67 (1991), 1882–1885 | DOI | MR
[10] Isaev A., Pyatov P., Rittenberg V., “Diffusion algebras”, J. Phys. A: Math. Gen., 34 (2001), 5815–5834 ; cond-mat/0103603 | DOI | MR | Zbl
[11] Aneva B., “The noncommutative space of stochastic diffusion systems”, J. Phys. A: Math. Gen., 35 (2002), 859–877 | DOI | MR | Zbl
[12] Essler F. H. L., Rittenberg V., “Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries”, J. Phys. A: Math. Gen., 29 (1996), 3375–3407 ; cond-mat/9506131 | DOI | MR | Zbl
[13] Arndt P. F., Heinzel T., Rittenberg V., “Stochastic models on a ring and quadratic algebras. The three-species diffusion problem”, J. Phys. A: Math. Gen., 31 (1998), 833–843 ; cond-mat/9703182 | DOI | MR | Zbl
[14] Fairlie D., Zachos C., “Multiparameter associative generalizations of canonical commutation relations and quantized planes”, Phys. Lett. B, 256 (1991), 43–49 | DOI | MR
[15] Wess J., Zumino B., “Covariant differential calculus on the quantum hyperplane”, Nucl. Phys. B, Proc. Suppl., 18 (1990), 302–312 | DOI | MR
[16] Blythe R. A., Evans M. R., Colaiori F., Essler F. H. L., “Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra”, J. Phys. A: Math. Gen., 33 (2000), 2313–2332 | DOI | MR | Zbl
[17] Sandow S., “Partially asymmetric exclusion process with open boundaries”, Phys. Rev. E, 50 (1994), 2660–2667 ; cond-mat/9405073 | DOI
[18] Stinchcombe R. B., Schuetz G. M., “Application of operator algebras to stochastic dynamics and the Heisenberg chain”, Phys. Rev. Lett., 75 (1995), 140–143 | DOI
[19] Arik M., Coon D. D., “Hilbert spaces of analytic functions and generalized coherent states”, J. Math. Phys., 17 (1976), 524–527 | DOI | MR
[20] Kulish P. P., Damaskinsky E. V., “On the $q$ oscillator and the quantum algebra $su_q(1,1)$”, J. Phys. A: Math. Gen., 23 (1990), L415–L419 | DOI | MR | Zbl
[21] Chaichian M., Kulish P. P., “Quantum Lie superalgebras and $q$-oscillators”, Phys. Lett. B, 234 (1990), 72–80 | DOI | MR | Zbl
[22] Sasamoto T., “One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomials approach”, J. Phys. A: Math. Gen., 32 (1999), 7109–7131 | DOI | MR | Zbl
[23] Uchiyama M., Sasamoto T., Wadati M., “Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials”, J. Phys. A: Math. Gen., 37 (2004), 4985–5002 ; cond-mat/0312457 | DOI | MR | Zbl
[24] Zhedanov A. S., “Hidden symmetry of Askey–Wilson polynomials”, Teoret. Mat. Fiz., 89:2 (1991), 190–204 | MR
[25] Granovskii Y. A., Lutsenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR
[26] Terwilliger P., “An algebraic approach to the Askey scheme of orthogonal polynomials”, Orthogonal polynomials and special functions, Lecture Notes in Mathematics, 1883, eds. F. Marcellan and W. V. Assche, Springer, Berlin, 2006, 225–330 | MR
[27] Terwilliger P., “Two relations that generalize the $q$-Serre relations and the Dolan–Grady relations”, Physics and combinatorics 1999, Proceedings of the Nagoya 1999 International Workshop on Physics and Combinatorics, eds. A. N. Kirillov, A. Tsuchiya and H. Umemura, World Sci. Pub., River Edge, NJ, 2001, 377–398 ; math.QA/0307016 | MR | Zbl
[28] Dolan L., Grady M., “Conserved charges from self-duality”, Phys. Rev. D, 25 (1982), 1587–1604 | DOI | MR
[29] Askey R. A., Wilson J. A., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985, 55 pp., ages | MR
[30] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl