@article{SIGMA_2007_3_a65,
author = {Leonid O. Chekhov},
title = {Teichm\"uller {Theory} of {Bordered} {Surfaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a65/}
}
Leonid O. Chekhov. Teichmüller Theory of Bordered Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a65/
[1] Bonahon F., “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math., VI. Sér., Math., 5:2 (1996), 233–297 | MR | Zbl
[2] Bondal A., A symplectic groupoid of triangular bilinear forms and the braid groups, Preprint IHES/M/00/02 (Jan. 2000)
[3] Chekhov L., Fock V., Talk at St. Petersburg Meeting on Seected Topics in Mathematical Physics, May 26–29, 1997; Chekhov L., Fock V., “A quantum Techmüller space”, Theor. and Math. Phys., 120:3 (1999), 1245–1259 ; ; Chekhov L., Fock V., “Quantum mapping class group, pentagon relation, and geodesics”, Proc. Steklov Math. Inst., 226, 1999, 149–163 math.QA/9908165 | DOI | MR | Zbl | Zbl
[4] Chekhov L. O., Fock V. V., “Observables in 3d gravity and geodesic algebras”, Czech. J. Phys., 50 (2000), 1201–1208 | DOI | MR | Zbl
[5] Chekhov L., Penner R. C., “On quantizing Teichmüller and Thurston theories”, Handbook of Teichmuller Theory, Vol. 1, IRMA Lect. Math. Theor. Phys., 11, European Math. Society, Zürich, 2007, 579–645 ; math.AG/0403247 | MR | Zbl
[6] Dubrovin B. A., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection group”, Invent. Math., 141 (2000), 55–147 ; math.AG/9806056 | DOI | MR | Zbl
[7] Fock V. V., Combinatorial description of the moduli space of projective structures, hep-th/9312193
[8] Fock V. V., Dual Teichmüller spaces, dg-ga/9702018
[9] Fock V. V., Goncharov A. B., Moduli spaces of local systems and higher Teichmüller theory, math.AG/0311149 | MR
[10] Fomin S., Zelevinsky A., “Cluster algebras. I. Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529 ; ; Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. Appl. Math., 28 (2002), 119–144 ; math.RT/0104151math.CO/0104241 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. Part I: Cluster complexes, math.RA/0608367
[12] Goldman W. M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85 (1986), 263–302 | DOI | MR | Zbl
[13] Kashaev R. M., “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43 (1998), 105–115 ; q-alg/9705021 | DOI | MR | Zbl
[14] Kashaev R. M., “On the spectrum of Dehn twists in quantum Teichmüller theory”, Physics and Combinatorics (2000, Nagoya), World Sci. Publ., River Edge, NJ, 2001, 63–81 ; math.QA/0008148 | MR | Zbl
[15] Kaufmann R. M., Penner R. C., “Closed/open string diagrammatics”, Nucl. Phys. B, 748 (2006), 335–379 ; math.GT/0603485 | DOI | MR | Zbl
[16] Nelson J. E., Regge T., “Homotopy groups and $(2+1)$-dimensional quantum gravity”, Nucl. Phys. B, 328 (1989), 190–199 | DOI | MR
[17] Nelson J. E., Regge T., Zertuche F., “Homotopy groups and $(2+1)$-dimensional quantum de Sitter gravity”, Nucl. Phys. B, 339 (1990), 516–532 | DOI | MR
[18] Papadopoulos A., Penner R. C., “The Weil–Petersson symplectic structure at Thurston's boundary”, Trans. Amer. Math. Soc., 335 (1993), 891–904 | DOI | MR | Zbl
[19] Penner R. C., “The decorated Teichmüller space of Riemann surfaces”, Comm. Math. Phys., 113 (1988), 299–339 | DOI | MR
[20] Penner R. C., Harer J. L., Combinatorics of train tracks, Annals of Mathematical Studies, 125, Princeton Univ. Press, Princeton, NJ, 1992 | MR | Zbl
[21] Teschner J., An analog of a modular functor from quantized Teichmüller theory, math.QA/0510174 | MR
[22] Thurston W. P., Minimal stretch maps between hyperbolic surfaces, Preprint, 1984; math.GT/9801039
[23] Ugaglia M., “On a Poisson structure on the space of Stokes matrices”, Int. Math. Res. Not., 1999:9 (1999), 473–493 ; math.AG/9902045 | DOI | MR | Zbl