The Rahman Polynomials Are Bispectral
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper.
Keywords: bispectral property; multivariable polynomials; rings of commuting difference operators.
@article{SIGMA_2007_3_a64,
     author = {F. Alberto Gr\"unbaum},
     title = {The {Rahman} {Polynomials} {Are} {Bispectral}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a64/}
}
TY  - JOUR
AU  - F. Alberto Grünbaum
TI  - The Rahman Polynomials Are Bispectral
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a64/
LA  - en
ID  - SIGMA_2007_3_a64
ER  - 
%0 Journal Article
%A F. Alberto Grünbaum
%T The Rahman Polynomials Are Bispectral
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a64/
%G en
%F SIGMA_2007_3_a64
F. Alberto Grünbaum. The Rahman Polynomials Are Bispectral. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a64/

[1] Andrews G., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1999 | MR | Zbl

[2] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985 | MR

[3] Castro M., Grünbaum F. A., “The algebra of matrix valued differential operators associated to a given family of matrix valued orthogonal polynomials: five instructive examples”, Int. Math. Res. Not., 2006 (2006), Article ID 47602, 33 pp., ages | DOI | MR | Zbl

[4] Cooper R., Hoare M., Rahman M., “Stochastic processes and special functions: on the probabilistic origin of some positive kernels associated with classical orthogonal polynomials”, J. Math. Anal. Appl., 61 (1977), 262–291 | DOI | MR | Zbl

[5] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Comm. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl

[6] Duran A. J., Grünbaum F. A., “Orthogonal matrix polynomials satisfying second order differential equations”, Int. Math. Res. Not., 2004:10 (2004), 461–484 | DOI | MR | Zbl

[7] Duran A., van Assche W., “Orthogonal matrix polynomials and higher order recurrence relations”, Linear Algebra Appl., 219 (1995), 261–280 ; math.CA/9310220 | DOI | MR | Zbl

[8] Dunkl C., Xu Y., Orthogonal polynomials of several variables, Cambridge University Press, 2001 | MR | Zbl

[9] Ehrenfest P., Eherenfest T., “Über zwei bekannte Einwände gegen das Boltzmannsche $H$-Theorem”, Physikalische Zeitschrift, 8 (1907), 311–314 | Zbl

[10] Feller W., An introduction to probability theory and its applications, Vol. 1, 3rd ed., Wiley, 1967 | MR

[11] Grünbaum F. A., “Matrix valued Jacobi polynomials”, Bull. Sci. Math., 127 (2003), 207–214 | DOI | MR | Zbl

[12] Grünbaum F. A., Random walks and orthogonal polynomials: some challenges, math.PR/0703375 | MR

[13] Grünbaum F. A., “The bispectral problem: an overview”, Special Functions 2000: Current Perspective and Future Directions, eds. J. Bustoz et al., 2001, 129–140 | MR | Zbl

[14] Grünbaum F. A., “Some bispectral musings”, The Bispectral Problem (Montreal, 1997), CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998, 11–30 | MR

[15] Grünbaum F. A., Pacharoni I., Tirao J. A., “Matrix valued spherical functions associated to the complex projective plane”, J. Funct. Anal., 188 (2002), 350–441 ; math.RT/0108042 | DOI | MR | Zbl

[16] Grünbaum F. A., Pacharoni I., Tirao J. A., “Matrix valued orthogonal polynomials of the Jacobi type”, Indag. Mathem., 14 (2003), 353–366 | DOI | MR | Zbl

[17] Grünbaum F. A., Pacharoni I., Tirao J. A., “Matrix valued orthogonal polynomials of the Jacobi type: the role of group representation theory”, Ann. Inst. Fourier (Grenoble), 55 (2005), 2051–2068 | MR | Zbl

[18] Harnard J., Kasman A. (ed.), The bispectral problem (Montreal, 1997), CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998 | MR

[19] Hoare M., Rahman M., “Distributive processes in discrete systems”, Phys. A, 97 (1979), 1–41 | DOI | MR

[20] Hoare M., Rahman M., “Cumultive Bernoulli trials and Krawtchouk processes”, Stochastic Process. Appl., 16 (1983), 113–139 | DOI | MR

[21] Hoare M., Rahman M., “Cumultive hypergeometric processes: a statistical role for the $_nF_{n-1}$ functions”, J. Math. Anal. Appl., 135 (1988), 615–626 | DOI | MR | Zbl

[22] Hoare M. R., Rahman M., “A probabilistic origin for a new class of bivariate polynomials”, SIGMA, 4 (2008), 089, 18 pp., ages ; arXiv:0812.3879 | MR | Zbl

[23] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Cambridge University Press, 2005 | MR

[24] Ismail M. E. H., Masson D. R., Letessier J., Valent G., “Birth and death processes and orthogonal polynomials”, Orthogonal Polynomials, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 294, ed. P. Nevai, Kluwer Acad. Publishers, Dordrecht, 1990, 229–255 | MR

[25] Kac M., “Random wak and the theory of Brownian motion”, Amer. Math. Monthly, 54 (1947), 369–391 | DOI | MR | Zbl

[26] Karlin S., McGregor J., “The classification of birth and death processes”, Trans. Amer. Math. Soc., 86 (1957), 366–400 | DOI | MR | Zbl

[27] Karlin S., McGregor J., “The Hahn polynomials, formulas and an applications”, Scripta Math., 26 (1961), 33–46 | MR | Zbl

[28] Koornwinder T., “Two variable analogues of the classical orthogonal polynomials”, Theory and Applic. of Special Functions, ed. R. Askey, Academic Press, 1975, 435–495 | MR

[29] Krein M. G., “Fundamental aspects of the representation theory of Hermitian operators with deficiency index $(m,m)$”, AMS Translations, Series 2, 97, Providence, Rhode Island, 1971, 75–143

[30] Krein M. G., “Infinite $J$-matrices and a matrix moment problem”, Dokl. Akad. Nauk SSSR, 69:2 (1949), 125–128 | MR | Zbl

[31] Macdonald I., Affine Hecke algebras and orthogonal polynomials, Cambridge University Press, 2003 | MR | Zbl

[32] Schrödinger E., Kohlrausch F., “Das Ehrenfestche Model der H-Kurve”, Phys. Zeit., 8 (1907), 311–314

[33] Sinap A., van Assche W., “Orthogonal matrix polynomials and applications”, J. Comput. Appl. Math., 66 (1996), 27–52 | DOI | MR | Zbl

[34] Tirao J., “The matrix valued hypergeometric equation”, Proc. Natl. Acad. Sci. USA, 100:14 (2003), 8138–8141 | DOI | MR | Zbl