Degenerate Series Representations of the $q$-Deformed Algebra $\mathrm{so}'_q(r,s)$
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $q$-deformed algebra $\mathrm{so}'_q(r,s)$ is a real form of the $q$-deformed algebra $U'_q(\mathrm {so}(n,\mathbb{C}))$, $n=r+s$, which differs from the quantum algebra $U_q(\mathrm{so}(n,\mathbb{C}))$ of Drinfeld and Jimbo. We study representations of the most degenerate series of the algebra $\mathrm{so}'_q(r,s)$. The formulas of action of operators of these representations upon the basis corresponding to restriction of representations onto the subalgebra $\mathrm{so}'_q(r)\times\mathrm{so}'_q(s)$ are given. Most of these representations are irreducible. Reducible representations appear under some conditions for the parameters determining the representations. All irreducible constituents which appear in reducible representations of the degenerate series are found. All $*$-representations of $\mathrm{so}'_q(r,s)$ are separated in the set of irreducible representations obtained in the paper.
Keywords: $q$-deformed algebras; irreducible representations; reducible representations.
@article{SIGMA_2007_3_a63,
     author = {Valentyna A. Groza},
     title = {Degenerate {Series} {Representations} of the $q${-Deformed} {Algebra} $\mathrm{so}'_q(r,s)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a63/}
}
TY  - JOUR
AU  - Valentyna A. Groza
TI  - Degenerate Series Representations of the $q$-Deformed Algebra $\mathrm{so}'_q(r,s)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a63/
LA  - en
ID  - SIGMA_2007_3_a63
ER  - 
%0 Journal Article
%A Valentyna A. Groza
%T Degenerate Series Representations of the $q$-Deformed Algebra $\mathrm{so}'_q(r,s)$
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a63/
%G en
%F SIGMA_2007_3_a63
Valentyna A. Groza. Degenerate Series Representations of the $q$-Deformed Algebra $\mathrm{so}'_q(r,s)$. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a63/

[1] Gavrilik A. M., Klimyk A. U., “$q$-deformed orthogonal and pseudo-orthogonal algebras and their representations”, Lett. Math. Phys., 21 (1991), 215–220 | DOI | MR | Zbl

[2] Drinfeld V. G., “Hopf algebras and quantum Yang–Baxter equation”, Sov. Math. Dokl., 32 (1985), 254–258 | MR

[3] Jimbo M., “A $q$-difference analogue of $U_q(\mathrm{gl}(N+1))$ and the Yang–Baxter equations”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[4] Klimyk A. U., Schmüdgen K., Quantum groups and their representations, Springer, Berlin, 1997 | MR

[5] Klimyk A. U., Kachurik I. I., “Spectra, eigenvectors and overlap functions for representation operators of $q$-deformed algebras”, Comm. Math. Phys., 175 (1996), 89–111 | DOI | MR | Zbl

[6] Nelson J., Regge T., “2+1 gravity for genus $s>1$”, Comm. Math. Phys., 141 (1991), 211–223 | DOI | MR | Zbl

[7] Noumi M., “Macdonald's symmetric polynomials as zonal spherical functions on quantum homogeneous spaces”, Adv. Math., 123 (1996), 16–77 | DOI | MR | Zbl

[8] Noumi M., Umeda T., Wakayama M., “Dual pairs, spherical harmonics and a Capelli identity in quantum group theory”, Compos. Math., 104 (1996), 227–277 | MR | Zbl

[9] Iorgov N. Z., Klimyk A. U., “The $q$-Laplace operator and $q$-harmonic polynomials on the quantum vector space”, J. Math. Phys., 42 (2001), 1326–1345 | DOI | MR | Zbl

[10] Bullock D., Przytycki J. H., Multiplicative structure of Kauffman bracket skein module quantization, math.QA/9902117 | MR

[11] Twietmeyer E., “Real forms of $U_q(g)$”, Lett. Math. Phys., 49 (1992), 49–58 | DOI | MR | Zbl

[12] Dobrev V. K., “Canonical $q$-deformation of noncompact Lie (super)algebras”, J. Phys. A: Math. Gen., 26 (1993), 1317–1329 | DOI | MR

[13] Celegini E., Giachetti R., Reyman A., Sorace E., Tarlini M., “$SO_q(n+1,n-1)$ as a real form of $SO_q(2n,\mathbb{C})$”, Lett. Math. Phys., 23 (1991), 45–44 | DOI | MR

[14] Raczka R., Limic N., Niederle J., “Discrete degenerate representations of the noncompact rotation groups”, J. Math. Phys., 7 (1966), 1861–1876 | DOI | MR | Zbl

[15] Molchanov V. F., “Representations of pseudo-orthogonal groups associated with a cone”, Math. USSR Sbornik, 10:3 (1970), 333–347 | DOI | Zbl

[16] Klimyk A. U., Matrix elements and Clebsch–Gordan coefficients of group representations, Naukova Dumka, Kiev, 1979 | MR | Zbl

[17] Howe R. E., Tan E. C., “Homogeneous functions on light cone: the infinitesimal structure of some degenerate principal series representations”, Bull. Amer. Math. Soc., 28 (1993), 1–74 | DOI | MR | Zbl

[18] Gavrilik A. M., Klimyk A. U., “Representations of $q$-deformed algebras $U_q(\mathrm{so}_{2,1})$ and $U_q(\mathrm{so}_{3,1})$”, J. Math. Phys., 35 (1994), 3670–3686 | DOI | MR | Zbl

[19] Kachurik I. I., Klimyk A. U., “Representations of the $q$-deformed algebra $U_q(\mathrm{so}_{r,2})$”, Dokl. Akad. Nauk Ukrainy, Ser. A, 9 (1995), 18–20 | MR

[20] Schmüdgen K., Unbounded operator algebras and representation theory, Birkhäuser, Basel, 1990 | MR

[21] Ostrovskyi V., Samoilenko Yu., “Introduction to the theory of representations of finitely presented $*$-algebras”, Reviers in Math. and Math. Phys., 11 (1999), 1–261 | DOI | MR | Zbl