@article{SIGMA_2007_3_a63,
author = {Valentyna A. Groza},
title = {Degenerate {Series} {Representations} of the $q${-Deformed} {Algebra} $\mathrm{so}'_q(r,s)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a63/}
}
Valentyna A. Groza. Degenerate Series Representations of the $q$-Deformed Algebra $\mathrm{so}'_q(r,s)$. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a63/
[1] Gavrilik A. M., Klimyk A. U., “$q$-deformed orthogonal and pseudo-orthogonal algebras and their representations”, Lett. Math. Phys., 21 (1991), 215–220 | DOI | MR | Zbl
[2] Drinfeld V. G., “Hopf algebras and quantum Yang–Baxter equation”, Sov. Math. Dokl., 32 (1985), 254–258 | MR
[3] Jimbo M., “A $q$-difference analogue of $U_q(\mathrm{gl}(N+1))$ and the Yang–Baxter equations”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[4] Klimyk A. U., Schmüdgen K., Quantum groups and their representations, Springer, Berlin, 1997 | MR
[5] Klimyk A. U., Kachurik I. I., “Spectra, eigenvectors and overlap functions for representation operators of $q$-deformed algebras”, Comm. Math. Phys., 175 (1996), 89–111 | DOI | MR | Zbl
[6] Nelson J., Regge T., “2+1 gravity for genus $s>1$”, Comm. Math. Phys., 141 (1991), 211–223 | DOI | MR | Zbl
[7] Noumi M., “Macdonald's symmetric polynomials as zonal spherical functions on quantum homogeneous spaces”, Adv. Math., 123 (1996), 16–77 | DOI | MR | Zbl
[8] Noumi M., Umeda T., Wakayama M., “Dual pairs, spherical harmonics and a Capelli identity in quantum group theory”, Compos. Math., 104 (1996), 227–277 | MR | Zbl
[9] Iorgov N. Z., Klimyk A. U., “The $q$-Laplace operator and $q$-harmonic polynomials on the quantum vector space”, J. Math. Phys., 42 (2001), 1326–1345 | DOI | MR | Zbl
[10] Bullock D., Przytycki J. H., Multiplicative structure of Kauffman bracket skein module quantization, math.QA/9902117 | MR
[11] Twietmeyer E., “Real forms of $U_q(g)$”, Lett. Math. Phys., 49 (1992), 49–58 | DOI | MR | Zbl
[12] Dobrev V. K., “Canonical $q$-deformation of noncompact Lie (super)algebras”, J. Phys. A: Math. Gen., 26 (1993), 1317–1329 | DOI | MR
[13] Celegini E., Giachetti R., Reyman A., Sorace E., Tarlini M., “$SO_q(n+1,n-1)$ as a real form of $SO_q(2n,\mathbb{C})$”, Lett. Math. Phys., 23 (1991), 45–44 | DOI | MR
[14] Raczka R., Limic N., Niederle J., “Discrete degenerate representations of the noncompact rotation groups”, J. Math. Phys., 7 (1966), 1861–1876 | DOI | MR | Zbl
[15] Molchanov V. F., “Representations of pseudo-orthogonal groups associated with a cone”, Math. USSR Sbornik, 10:3 (1970), 333–347 | DOI | Zbl
[16] Klimyk A. U., Matrix elements and Clebsch–Gordan coefficients of group representations, Naukova Dumka, Kiev, 1979 | MR | Zbl
[17] Howe R. E., Tan E. C., “Homogeneous functions on light cone: the infinitesimal structure of some degenerate principal series representations”, Bull. Amer. Math. Soc., 28 (1993), 1–74 | DOI | MR | Zbl
[18] Gavrilik A. M., Klimyk A. U., “Representations of $q$-deformed algebras $U_q(\mathrm{so}_{2,1})$ and $U_q(\mathrm{so}_{3,1})$”, J. Math. Phys., 35 (1994), 3670–3686 | DOI | MR | Zbl
[19] Kachurik I. I., Klimyk A. U., “Representations of the $q$-deformed algebra $U_q(\mathrm{so}_{r,2})$”, Dokl. Akad. Nauk Ukrainy, Ser. A, 9 (1995), 18–20 | MR
[20] Schmüdgen K., Unbounded operator algebras and representation theory, Birkhäuser, Basel, 1990 | MR
[21] Ostrovskyi V., Samoilenko Yu., “Introduction to the theory of representations of finitely presented $*$-algebras”, Reviers in Math. and Math. Phys., 11 (1999), 1–261 | DOI | MR | Zbl