@article{SIGMA_2007_3_a62,
author = {Tom H. Koornwinder},
title = {The {Relationship} between {Zhedanov's} {Algebra} $AW(3)$ and the {Double} {Affine} {Hecke} {Algebra} in the {Rank} {One} {Case}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/}
}
TY - JOUR AU - Tom H. Koornwinder TI - The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/ LA - en ID - SIGMA_2007_3_a62 ER -
%0 Journal Article %A Tom H. Koornwinder %T The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/ %G en %F SIGMA_2007_3_a62
Tom H. Koornwinder. The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/
[3] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985 | MR
[4] Cheredni I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., no. 9 (1992), 171–180 | DOI | MR
[5] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Cambridge University Press, 2004 | MR | Zbl
[6] Grünbaum F. A., Haine L., “On a $q$-analogue of the string equation and a generalization of the classical orthogonal polynomials”, Algebraic Methods and $q$-Special Functions, CRM Proc. Lecture Notes, 22, eds. J. F. van Diejen and L. Vinet, Amer. Math. Soc., 1999, 171–181 | MR | Zbl
[7] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/
[8] Koornwinder T. H., “The structure relation for Askey–Wilson polynomials”, J. Comput. Appl. Math., 207:2 (2007), 214–226 ; math.CA/0601303 | DOI | MR | Zbl
[9] Macdonald I. G., Affine Hecke algebra and orthogonal polynomials, Cambridge University Press, 2003 | MR | Zbl
[10] NCAlgebra: a “Non Commutative Algebra” package running under Mathematica${}^{\footnotesize\textregistered}$, http://www.math.ucsd.edu/~ncalg/
[11] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebraic approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144 ; math.QA/0001033 | MR | Zbl
[12] Rains E. M., “A difference integral representation of Koornwinder polynomials, in Jack, Hall–Littlewood and Macdonald Polynomials”, Contemp. Math., 417 (2006), 319–333 ; math.CA/0409437 | MR | Zbl
[13] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math. (2), 150 (1999), 267–282 ; q-alg/9710032 | DOI | MR | Zbl
[14] Sahi S., “Some properties of Koornwinder polynomials, in $q$-Series from a Contemporary Perspective”, Contemp. Math., 254 (2000), 395–411 | MR | Zbl
[15] Sahi S., “Raising and lowering operators for Askey–Wilson polynomials”, SIGMA, 3 (2007), 002, 11 pp., ages ; math.QA/0701134 | MR | Zbl
[16] Stokman J. V., “Koornwinder polynomials and affine Hecke algebras”, Int. Math. Res. Not., no. 19 (2000), 1005–1042 ; math.QA/0002090 | DOI | MR
[17] Terwilliger P., Vidunas R.,, “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426 ; math.QA/0305356 | DOI | MR | Zbl
[18] Zhedanov A. S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89:2 (1991), 1146–1157 | DOI | MR | Zbl