The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Zhedanov's algebra $AW(3)$ is considered with explicit structure constants such that, in the basic representation, the first generator becomes the second order $q$-difference operator for the Askey–Wilson polynomials. It is proved that this representation is faithful for a certain quotient of $AW(3)$ such that the Casimir operator is equal to a special constant. Some explicit aspects of the double affine Hecke algebra (DAHA) related to symmetric and non-symmetric Askey–Wilson polynomials are presented and proved without requiring knowledge of general DAHA theory. Finally a central extension of this quotient of $AW(3)$ is introduced which can be embedded in the DAHA by means of the faithful basic representations of both algebras.
Keywords: Zhedanov's algebra $AW(3)$; double affine Hecke algebra in rank one; Askey–Wilson polynomials; non-symmetric Askey–Wilson polynomials.
@article{SIGMA_2007_3_a62,
     author = {Tom H. Koornwinder},
     title = {The {Relationship} between {Zhedanov's} {Algebra} $AW(3)$ and the {Double} {Affine} {Hecke} {Algebra} in the {Rank} {One} {Case}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/}
}
TY  - JOUR
AU  - Tom H. Koornwinder
TI  - The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/
LA  - en
ID  - SIGMA_2007_3_a62
ER  - 
%0 Journal Article
%A Tom H. Koornwinder
%T The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/
%G en
%F SIGMA_2007_3_a62
Tom H. Koornwinder. The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a62/

[3] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985 | MR

[4] Cheredni I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., no. 9 (1992), 171–180 | DOI | MR

[5] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Cambridge University Press, 2004 | MR | Zbl

[6] Grünbaum F. A., Haine L., “On a $q$-analogue of the string equation and a generalization of the classical orthogonal polynomials”, Algebraic Methods and $q$-Special Functions, CRM Proc. Lecture Notes, 22, eds. J. F. van Diejen and L. Vinet, Amer. Math. Soc., 1999, 171–181 | MR | Zbl

[7] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/

[8] Koornwinder T. H., “The structure relation for Askey–Wilson polynomials”, J. Comput. Appl. Math., 207:2 (2007), 214–226 ; math.CA/0601303 | DOI | MR | Zbl

[9] Macdonald I. G., Affine Hecke algebra and orthogonal polynomials, Cambridge University Press, 2003 | MR | Zbl

[10] NCAlgebra: a “Non Commutative Algebra” package running under Mathematica${}^{\footnotesize\textregistered}$, http://www.math.ucsd.edu/~ncalg/

[11] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebraic approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144 ; math.QA/0001033 | MR | Zbl

[12] Rains E. M., “A difference integral representation of Koornwinder polynomials, in Jack, Hall–Littlewood and Macdonald Polynomials”, Contemp. Math., 417 (2006), 319–333 ; math.CA/0409437 | MR | Zbl

[13] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math. (2), 150 (1999), 267–282 ; q-alg/9710032 | DOI | MR | Zbl

[14] Sahi S., “Some properties of Koornwinder polynomials, in $q$-Series from a Contemporary Perspective”, Contemp. Math., 254 (2000), 395–411 | MR | Zbl

[15] Sahi S., “Raising and lowering operators for Askey–Wilson polynomials”, SIGMA, 3 (2007), 002, 11 pp., ages ; math.QA/0701134 | MR | Zbl

[16] Stokman J. V., “Koornwinder polynomials and affine Hecke algebras”, Int. Math. Res. Not., no. 19 (2000), 1005–1042 ; math.QA/0002090 | DOI | MR

[17] Terwilliger P., Vidunas R.,, “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426 ; math.QA/0305356 | DOI | MR | Zbl

[18] Zhedanov A. S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89:2 (1991), 1146–1157 | DOI | MR | Zbl