Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure $J$ can be written as the Lie derivative of $J^{-1}$ along a suitably chosen nonlocal vector field. Moreover, we present a new description for local Hamiltonian structures of arbitrary order compatible with a given nondegenerate local Hamiltonian structure of zero or first order, including Hamiltonian operators of the Dubrovin–Novikov type.
Keywords: weakly nonlocal Hamiltonian structure; symplectic structure; Lie derivative.
@article{SIGMA_2007_3_a61,
     author = {Artur Sergyeyev},
     title = {Weakly {Nonlocal} {Hamiltonian} {Structures:} {Lie} {Derivative} and {Compatibility}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a61/}
}
TY  - JOUR
AU  - Artur Sergyeyev
TI  - Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a61/
LA  - en
ID  - SIGMA_2007_3_a61
ER  - 
%0 Journal Article
%A Artur Sergyeyev
%T Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a61/
%G en
%F SIGMA_2007_3_a61
Artur Sergyeyev. Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a61/

[1] Błaszak M., Multi-Hamiltonian theory of dynamical systems, Springer, Heidelberg, 1998 | MR

[2] Bocharov A. V. et al.,, Symmetries and conservation laws for differential equations of mathematical physics, American Mathematical Society, Providence, RI, 1999 | MR

[3] Cooke D. B., “Compatibility conditions for Hamiltonian pairs”, J. Math. Phys., 32:11 (1991), 3071–3076 | DOI | MR | Zbl

[4] Degiovanni L., Magri F., Sciacca V., “On deformation of Poisson manifolds of hydrodynamic type”, Comm. Math. Phys., 253 (2005), 1–24 ; nlin.SI/0103052 | DOI | MR | Zbl

[5] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, John Wiley Sons, Chichester, 1993 | MR

[6] Dubrovin B. A., Novikov S. P., “Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov–Whitham averaging method”, Soviet Math. Dokl., 27 (1983), 665–669 | MR | Zbl

[7] Dubrovin B. A., Novikov S. P., “On Poisson brackets of hydrodynamic type”, Soviet Math. Dokl., 30 (1984), 651–654 | MR | Zbl

[8] Ferapontov E. V., “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A: Math. Gen., 34 (2001), 2377–2388 ; math.DG/0005221 | DOI | MR | Zbl

[9] Ferapontov E. V., “Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type”, Funct. Anal. Appl., 25:3 (1991), 195–204 | DOI | MR | Zbl

[10] Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in topology and mathematical physics, Am. Math. Soc. Trans., 170, 1995, 33–58 | MR | Zbl

[11] Finkel F., Fokas A. S., “On the construction of evolution equations admitting a master symmetry”, Phys. Lett. A, 293 (2002), 36–44 ; nlin.SI/0112002 | DOI | MR | Zbl

[12] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981/82), 47–66 | DOI | MR

[13] Lichnerowicz A., “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geometry, 12:2 (1977), 253–300 | MR | Zbl

[14] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[15] Maltsev A. Ya., “Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type”, J. Phys. A: Math. Gen., 38 (2005), 637–682 ; nlin.SI/0405060 | DOI | MR | Zbl

[16] Maltsev A. Ya., Novikov S. P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Phys. D, 156:1–2 (2001), 53–80 ; nlin.SI/0006030 | DOI | MR | Zbl

[17] Mikhailov A. V., Shabat A. B., Sokolov V. V., “The symmetry approach to classification of integrable equations”, What is Integrability?, eds. V. E. Zakharov, Springer, New York, 1991, 115–184 | MR | Zbl

[18] Mikhailov A. V., Shabat A. B., Yamilov R. I., “The symmetry approach to classification of nonlinear equations. Complete lists of integrable systems”, Russ. Math. Surv., 42:4 (1987), 1–63 | DOI | MR

[19] Mikhailov A. V., Yamilov R. I., “Towards classification of (2+1)-dimensional integrable equations. Integrability conditions. I”, J. Phys. A: Math. Gen., 31 (1998), 6707–6715 | DOI | MR | Zbl

[20] Mokhov O. I., “Symplectic and Poisson geometry on loop sapces of manifolds in nonlinear equations”, Topics in Topology and Mathematical Physics, eds. S. P. Novikov, AMS, Providence, RI, 1995, 121–151 ; hep-th/9503076 | MR

[21] Mokhov O. I., “Compatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type”, Theoret. and Math. Phys., 133:2 (2002), 1557–1564 ; math.DG/0201281 | DOI | MR

[22] Mokhov O. I., “Compatible nonlocal Poisson brackets of hydrodynamic type and related integrable hierarchies”, Theoret. and Math. Phys., 132:1 (2002), 942–954 ; math.DG/0201242 | DOI | MR | Zbl

[23] Oevel W., Rekursionmechanismen für Symmetrien und Erhaltungssätze in Integrablen Systemen, Ph.D. Thesis, University of Paderborn, Paderborn, 1984 | MR | Zbl

[24] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1993 | MR

[25] Sergyeyev A., “On recursion operators and nonlocal symmetries of evolution equations”, Proc. Sem. Diff. Geom., eds. D. Krupka, Silesian University in Opava, Opava, 2000, 159–173 ; nlin.SI/0012011 | MR | Zbl

[26] Sergyeyev A., “A simple way to make a Hamiltonian system into bi-Hamiltonian one”, Acta Appl. Math., 83 (2004), 183–197 ; nlin.SI/0310012 | DOI | MR | Zbl

[27] Sergyeyev A., “Why nonlocal recursion operators produce local symmetries: new results and applications”, J. Phys. A: Math. Gen., 38:15 (2005), 3397–3407 ; nlin.SI/0410049 | DOI | MR | Zbl

[28] Smirnov R. G., “Bi-Hamiltonian formalism: a constructive approach”, Lett. Math. Phys., 41 (1997), 333–347 | DOI | MR | Zbl

[29] Sokolov V. V., “On symmetries of evolution equations”, Russ. Math. Surv., 43:5 (1988), 165–204 | DOI | MR | Zbl

[30] Vaisman I., Lectures on the geometry of Poisson manifolds, Birkhäuser, Basel, 1994 | MR | Zbl

[31] Wang J. P., Symmetries and conservation laws of evolution equations, Ph.D. Thesis, Vrije Universiteit van Amsterdam, Amsterdam, 1998

[32] Wang J. P., “A list of $1+1$ dimensional integrable equations and their properties”, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 213–233 | DOI | MR