@article{SIGMA_2007_3_a60,
author = {Toshio Oshima},
title = {Completely {Integrable} {Systems} {Associated} with {Classical} {Root} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a60/}
}
Toshio Oshima. Completely Integrable Systems Associated with Classical Root Systems. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a60/
[1] Adler M., “Some finite-dimensional integrable systems and their behaviour”, Comm. Math. Phys., 55 (1977), 195–230 | DOI | MR | Zbl
[2] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR
[3] Braden H. W., Byatt-Smith J. G. B., “On a functional differential equation of determinantal types”, Bull. London Math. Soc., 31 (1999), 463–470 ; math.CA/9804082 | DOI | MR | Zbl
[4] Buchstaber V. M., Perelomov A. M., “On the functional equation related to the quantum three-body problem”, Berezin Memorial Volume, Amer. Math. Soc. Transl. (2), 175 (1996), 15–34 ; math-ph/0205032 | MR | Zbl
[5] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair-potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[6] Chalykh O. A., Feigin M., Veselov A., “New integrable generalizations of Calogero–Moser quantum problems”, J. Math. Phys., 39 (1998), 695–703 | DOI | MR | Zbl
[7] Chalykh O. A., Veselov A., “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl
[8] van Diejen J. F., “Difference Calogero–Moser systems and finite Toda chains”, J. Math. Phys., 36 (1995), 1299–1323 | DOI | MR | Zbl
[9] Goodman R., Wallach N. R., “Classical and quantum-mechanical systems of Toda lattice type. I”, Comm. Math. Phys., 83 (1982), 355–386 | DOI | MR | Zbl
[10] Goodman R., Wallach N. R., “Classical and quantum-mechanical systems of Toda lattice type. III. Joint eigenfunctions of the quantized systems”, Comm. Math. Phys., 105 (1986), 473–509 | DOI | MR | Zbl
[11] Heckman G. J., Opdam E. M., “Root system and hypergeometric functions. I”, Comp. Math., 64 (1987), 329–352 | MR | Zbl
[12] Inozemtsev V. I., “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11–17 | DOI | MR | Zbl
[13] Inozemtsev V. I., “The finite Toda lattices”, Comm. Math. Phys., 121 (1989), 629–638 | DOI | MR | Zbl
[14] Levi D., Wojciechowski S., “On the Olshanetsky–Perelomov many-body system in an external field”, Phys. Lett. A, 103 (1984), 11–14 | DOI | MR
[15] Helgason S., Groups and geometric analysis, Academic Press, 1984 | MR | Zbl
[16] Kashiwara M., Oshima T., “Systems of differential equations with regular singularities and their boundary value problems”, Ann. Math., 106 (1977), 145–200 | DOI | MR | Zbl
[17] Kostant B., “The solution to a generalized Toda lattices and representation theory”, Adv. Math., 34 (1979), 195–338 | DOI | MR | Zbl
[18] Kuznetsov V. B., “Separation of variables for the $D_n$-type periodic Toda lattice”, J. Phys. A: Math. Gen., 30 (1997), 2127–2138 ; solv-int/9701009 | DOI | MR | Zbl
[19] Kuznetsov V. B., Jørgensen J., Christiansen P. L., “New boundary conditions for integrable lattices”, J. Phys. A: Math. Gen., 28 (1995), 4639–4654 ; hep-th/9503168 | DOI | MR | Zbl
[20] Kuznetsov V. B., Tsyganov A. V., “Infinite series of Lie algebras and boundary conditions for integrable systems”, J. Soviet Math., 59 (1992), 1085–1092 | DOI | MR
[21] Kuznetsov V. B., Tsyganov A. V., Separation of variables for the quantum relativistic Toda lattices, Mathematical Preprint Series, University of Amsterdam
[22] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformation”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[23] Ochiai H., “Commuting differential operators of rank two”, Indag. Math. (N.S.), 7 (1996), 243–255 | DOI | MR | Zbl
[24] Ochiai H., Oshima T., “Commuting differential operators with $B_2$ symmetry”, Funkcial. Ekvac., 46 (2003), 297–336 | DOI | MR | Zbl
[25] Ochiai H., Oshima T., Sekiguchi H.,, “Commuting families of symmetric differential operators”, Proc. Japan Acad. A, 70 (1994), 62–66 | DOI | MR | Zbl
[26] Olshanetsky M. A., Perelomov A. M., “Explicit solutions of the periodic Toda lattices”, Invent. Math., 54 (1979), 261–269 | DOI | MR | Zbl
[27] Olshanetsky M. A., Perelomov A. M., “Classical integrable finite dimensional systems related to Lie algebras”, Phys. Rep., 71 (1981), 313–400 | DOI | MR
[28] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[29] Oshima T., “Completely integrable systems with a symmetry in coordinates”, Asian J. Math., 2 (1998), 935–956 ; math-ph/0502028 | MR | Zbl
[30] Oshima T., “A class of completely integrable quantum systems associated with classical root systems”, Indag. Mathem., 48 (2005), 655–677 ; math-ph/0502019 | DOI | MR
[31] Oshima T., “Commuting differential operators with regular singularities”, Algebraic Analysis of Differential Equations, Springer-Verlag, Tokyo, 195–224 | Zbl
[32] Oshima T., Sekiguchi H., “Commuting families of differential operators invariant under the action of a Weyl group”, J. Math. Sci. Univ. Tokyo, 2 (1995), 1–75 | MR | Zbl
[33] Ruijsenaars S. N. M., “Systems of Calogero–Moser type”, Particles and fields, Proceedings of the 1994 CRM Banff Summer School, CRM Ser. Math. Phys., 1999, 251–352 | MR
[34] Sekiguchi J., “Zonal spherical functions on some symmetric spaces”, Publ. Res. Inst. Math. Sci., 12, suppl. (1977), 455–459 | DOI | MR | Zbl
[35] Sergeev A. N., Veselov A. P., “Deformed quantum Calogero–Moser problems and Lie superalgebras”, Comm. Math. Phys., 245 (2004), 249–278 ; math-ph/0303025 | DOI | MR | Zbl
[36] Sutherland B., “Exact results for a quantum many-body problems in one dimension II”, Phys. Rev. A, 5 (1972), 1372–1376 | DOI
[37] Taniguchi K., “On the symmetry of commuting differential operators with singularities along hyperplanes”, Int. Math. Res. Not., 36 (2004), 1845–1867 ; math-ph/0309011 | DOI | MR | Zbl
[38] Toda M., “Wave propagation in anharmonic lattice”, IPSJ J., 23 (1967), 501–506
[39] Veselov A., Stykas K. L., Chalykh O. A., “Algebraic integrability for the Schrödinger equations and finite reflection groups”, Theor. Math. Phys., 94:2 (1993), 182–197 | DOI | MR | Zbl
[40] Wakida S., Quantum integrable systems associated with classical Weyl groups, Master Thesis, University of Tokyo, 2004
[41] Whittaker E. T., Watson G. N., A course of modern analysis, 4th ed., Cambridge University Press, 1927 | MR