Multi-Hamiltonian Structures on Beauville's Integrable System and Its Variant
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Beauville's completely integrable system and its variant from a viewpoint of multi-Hamiltonian structures. We also relate our result to the previously known Poisson structures on the Mumford system and the even Mumford system.
Keywords: completely integrable system; Mumford system; multi-Hamiltonian structure.
@article{SIGMA_2007_3_a6,
     author = {Rei Inoue and Yukiko Konishi},
     title = {Multi-Hamiltonian {Structures} on {Beauville's} {Integrable} {System} and {Its} {Variant}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a6/}
}
TY  - JOUR
AU  - Rei Inoue
AU  - Yukiko Konishi
TI  - Multi-Hamiltonian Structures on Beauville's Integrable System and Its Variant
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a6/
LA  - en
ID  - SIGMA_2007_3_a6
ER  - 
%0 Journal Article
%A Rei Inoue
%A Yukiko Konishi
%T Multi-Hamiltonian Structures on Beauville's Integrable System and Its Variant
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a6/
%G en
%F SIGMA_2007_3_a6
Rei Inoue; Yukiko Konishi. Multi-Hamiltonian Structures on Beauville's Integrable System and Its Variant. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a6/

[1] Beauville A., “Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables”, Acta Math., 164 (1990), 211–235 | DOI | MR | Zbl

[2] Donagi R., Markman E., “Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles”, Integrable systems and quantum groups, Lecture Notes in Math., 1620, Springer, Berlin, 1996, 1–119 | MR | Zbl

[3] Fernandes R. L., Vanhaecke P., “Hyperelliptic Prym varieties and integrable systems”, Comm. Math. Phys., 221 (2001), 169–196 ; math-ph/0011051 | DOI | MR | Zbl

[4] Fu B., “Champs de vecteurs invariants par translation sur les jacobiennes affines des courbes spectrales”, C. R. Math. Acad. Sci. Paris, 337:2 (2003), 105–110 | MR | Zbl

[5] Inoue R., Konishi Y., Yamazaki T., “Jacobian variety and integrable system – after Mumford, Baeuville and Vanhaecke”, J. Phys. Geom., 57:3 (2007), 815–831 ; math-ph/0512033 | DOI | MR | Zbl

[6] Mumford D., Tata lectures on theta, II, Birkhäuser, 1984 | MR | Zbl

[7] Nakayashiki A., Smirnov F. A., “Cohomologies of affine Jacobi varieties and integrable systems”, Comm. Math. Phys., 217 (2001), 623–652 ; math-ph/0001017 | DOI | MR | Zbl

[8] Pendroni M., Vanhaecke P., “A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure”, Regul. Chaotic Dyn., 3 (1998), 132–160 | DOI | MR

[9] Reyman A. G., Semenov-Tian-Shansky M. A., “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Encyclopedia of Mathematical Sciences, 16, Springer-Verlag, Berlin – Heidelgerg, 1994, 116–225 | MR

[10] Smirnov F. A., Zeitlin V., Affine Jacobi varieties of spectral curves and integrable models, math-ph/0203037

[11] Vanhaecke P., “Linearising two-dimensional integrable systems and the construction of action-angle variables”, Math. Z., 211 (1992), 265–313 | DOI | MR | Zbl

[12] Vanhaecke P., Integrable systems in the realm of algebraic geometry, Lecture Notes in Math., 1638, Springer, Berlin, 2001 | MR | Zbl