Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ be the tensor product of finite-dimensional polynomial evaluation $Y(\mathfrak{gl}_N)$-modules. Consider the universal difference operator $\mathfrak D=\sum\limits_{k=0}^N (-1)^k\mathfrak T_k(u) e^{-k\partial _u }$ whose coefficients $\mathfrak T_k(u)\colon M\to M$ are the XXX transfer matrices associated with $M$. We show that the difference equation $\mathfrak D f=0$ for an $M$-valued function $f$ has a basis of solutions consisting of quasi-exponentials. We prove the same for the universal differential operator $D=\sum\limits_{k=0}^N (-1)^k\mathcal S_k(u)\partial_u^{N-k}$ whose coefficients $\mathcal S_k(u)\colon\mathcal M\to\mathcal M$ are the Gaudin transfer matrices associated with the tensor product $\mathcal M$ of finite-dimensional polynomial evaluation $\mathfrak{gl}_N[x]$-modules.
Keywords: Gaudin model; XXX model; universal differential operator.
@article{SIGMA_2007_3_a59,
     author = {Evgeny Mukhin and Vitaly Tarasov and Alexander Varchenko},
     title = {Generating {Operator} of {XXX} or {Gaudin} {Transfer} {Matrices} {Has} {Quasi-Exponential} {Kernel}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a59/}
}
TY  - JOUR
AU  - Evgeny Mukhin
AU  - Vitaly Tarasov
AU  - Alexander Varchenko
TI  - Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a59/
LA  - en
ID  - SIGMA_2007_3_a59
ER  - 
%0 Journal Article
%A Evgeny Mukhin
%A Vitaly Tarasov
%A Alexander Varchenko
%T Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a59/
%G en
%F SIGMA_2007_3_a59
Evgeny Mukhin; Vitaly Tarasov; Alexander Varchenko. Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a59/

[1] Chervov A., Talalaev D., Universal $G$-oper and Gaudin eigenproblem, hep-th/0409007

[2] Drinfeld V., “A new realization of Yangians and quantized affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR

[3] Kulish P., Reshetikhin N.,, “Diagonalization of $GL(n)$ invariant transfer-matrices and quantum $N$-wave system (Lee model)”, J. Phys. A: Math. Gen., 15 (1983), L591–L596 | DOI | MR

[4] Molev A., Nazarov M., Olshanski G., “Yangians and classical Lie algebras”, Russian Math. Surveys, 51:2 (1996), 205–282 ; hep-th/9409025 | DOI | MR | Zbl

[5] Mukhin E., Tarasov V., Varchenko A., The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, math.AG/0512299 | MR

[6] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 8 (2006), P08002, 44 pp., ages ; math.QA/0605015 | DOI | MR

[7] Mukhin E., Varchenko A., “Critical points of master functions and flag varieties”, Commun. Contemp. Math., 6:1 (2004), 111–163 ; math.QA/0209017 | DOI | MR | Zbl

[8] Mukhin E., Varchenko A., “Solutions to the XXX type Bethe ansatz equations and flag varieties”, Cent. Eur. J. Math., 1:2 (2003), 238–271 ; math.QA/0211321 | DOI | MR | Zbl

[9] Mukhin E., Varchenko A., Spaces of quasi-polynomials and the Bethe ansatz, math.QA/0604048 | MR

[10] Reshetikhin N., Varchenko A.,, “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, Topology and Physics for R. Bott, Conf. Proc. Lecture Notes Geom. Topology, 4, Intern. Press, Cambridge, MA, 1995, 293–322 ; hep-th/9402126 | MR

[11] Rimányi R., Stevens L., Varchenko A., “Combinatorics of rational functions and Poincaré–Birkhoff–Witt expansions of the canonical $U(\mathfrak n_-)$-valued differential form”, Ann. Comb., 9:1 (2005), 57–74 ; math.CO/0407101 | DOI | MR | Zbl

[12] Schechtman V., Varchenko A., “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl

[13] Talalaev D., Quantization of the Gaudin system, hep-th/0404153

[14] Tarasov V., Varchenko A., Combinatorial formulae for nested bethe vectors, math.QA/0702277 | MR