@article{SIGMA_2007_3_a57,
author = {Matteo Petrera and Orlando Ragnisco},
title = {From $\mathfrak{su}(2)$ {Gaudin} {Models} to {Integrable} {Tops}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a57/}
}
Matteo Petrera; Orlando Ragnisco. From $\mathfrak{su}(2)$ Gaudin Models to Integrable Tops. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a57/
[1] Audin M., Spinning tops, Cambridge University Press, 1996 | MR | Zbl
[2] Belavin A. A., Drinfel'd V. G., “Solutions of the classical Yang–Baxter equation for simple Lie algebras”, Funktsional. Anal. i Prilozhen., 16:3 (1982), 1–29 | MR | Zbl
[3] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometrical methods in the theory of integrable equations, Springer, Heidelberg, 1991
[4] Bobenko A. I., Suris Yu. B., “Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top”, Comm. Math. Phys., 204 (1999), 147–188 ; solv-int/9810018 | DOI | MR | Zbl
[5] Gaudin M., “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37 (1976), 1089–1098 | MR
[6] Gaudin M., La fonction d' onde de Bethe, Masson, Paris, 1983 | MR | Zbl
[7] Gavrilov L., Zhivkov A., “The complex geometry of Lagrange top”, Enseign. Math., 44:1–2 (1998), 133–170 ; solv-int/9809012 | MR | Zbl
[8] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for the $sl(2)$ Gaudin magnet”, J. Phys. A: Math. Gen., 34 (2001), 2477–2490 ; nlin.SI/0007041 | DOI | MR | Zbl
[9] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Natl. Acad. Sci., 39 (1953), 510–524 | DOI | MR | Zbl
[10] Jurčo B., “Classical Yang–Baxter equations and quantum integrable systems”, J. Math. Phys., 30 (1989), 1289–1293 | DOI | MR | Zbl
[11] Kalnins E. G., Kuznetsov V. B., Miller W. Jr., “Separation of variables and the XXZ Gaudin magnet”, Rend. Sem. Mat. Univ. Polit. Torino, 53 (1995), 109–120 ; hep-th/9412190 | MR | Zbl
[12] Kalnins E. G., Kuznetsov V. B., Miller W. Jr., “Quadrics on complex Riemannian spaces of constant curvature, separation of variables and the Gaudin magnet”, J. Math. Phys., 35 (1994), 1710–1731 ; hep-th/9308109 | DOI | MR | Zbl
[13] Kuznetsov V. B., “Quadrics on real Riemannian spaces of constant curvature: separation of variables and connection with Gaudin magnet”, J. Math. Phys., 33 (1992), 3240–3254 | DOI | MR | Zbl
[14] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37 (2004), 8495–8512 ; nlin.SI/0403028 | DOI | MR | Zbl
[15] Kuznetsov V. B., Sklyanin E. K., “Few remarks on Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl
[16] Kuznetsov V. B., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; nlin.SI/0004003 | DOI | MR | Zbl
[17] Musso F., Petrera M., Ragnisco O., “Algebraic extensions of Gaudin models”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 482–498 ; nlin.SI/0410016 | DOI | MR
[18] Musso F., Petrera M., Ragnisco O., Satta G., “A rigid body dynamics derived from a class of extended Gaudin models: an integrable discretization”, Regul. Chaotic Dyn., 10 (2005), 363–380 ; math-ph/0503002 | DOI | MR | Zbl
[19] Musso F., Petrera M., Ragnisco O., Satta G., “Bäcklund transformations for the rational Lagrange chain”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 240–252 ; nlin.SI/0412017 | DOI | MR | Zbl
[20] Petrera M., Integrable extensions and discretizations of classical Gaudin models, PhD Thesis Dipartimento di Fisica E. Amaldi, Università degli Studi Roma Tre, Rome, Italy, 2007
[21] Petrera M., Suris Yu. B., Integrable discretizations of rational $su(2)$ Gaudin models and their extensions, in preparation
[22] Reyman A. G., Semenov-Tian-Shansky M. A., “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems, VII, Encyclopaedia of Mathematical Sciences, 16, eds. V. I. Arnold and S. P. Novikov, Springer, Berlin, 1994, 116–225 | MR
[23] Sklyanin E. K., “Some algebraic structures connected with the Yang-Baxter equation”, Funktsional. Anal. i Prilozhen., 16:4 (1982), 27–34, 96 (in Russian) | MR | Zbl
[24] J. Soviet Math., 47:2 (1989), 2473–2488 | DOI | MR | Zbl
[25] Sklyanin E. K., “The Poisson structure of the classical XXZ-chain”, Vopr. Kvant. Teor. Polya i Statist. Fiz. 7, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 161, 1987, 88–97 ; 176–177; 179–180; English transl.: J. Soviet Math., 46:5 (1989), 2104–2111 | MR | Zbl | DOI
[26] Sklyanin E. K., Takebe T., “Algebraic Bethe ansatz for XYZ Gaudin model”, Phys. Lett. A, 219 (1996), 217–225 ; q-alg/9601028 | DOI | MR | Zbl
[27] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, 219, Birkhäuser Verlag, Basel, 2003 | MR | Zbl
[28] Suris Yu. B., “The motion of a rigid body in a quadratic potential: an integrable discretization”, Int. Math. Res. Not., 12 (2000), 643–663 ; solv-int/9909009 | DOI | MR | Zbl
[29] Suris Yu. B., “Integrable discretizations of some cases of the rigid body dynamics”, J. Nonlinear Math. Phys., 8 (2001), 534–560 ; nlin.SI/0105012 | DOI | MR | Zbl