On the Applications of a New Technique to Solve Linear Differential Equations, with and without Source
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general method for solving linear differential equations of arbitrary order, is used to arrive at new representations for the solutions of the known differential equations, both without and with a source term. A new quasi-solvable potential has also been constructed taking recourse to the above method.
Keywords: Euler operator; monomials; quasi-exactly solvable models.
@article{SIGMA_2007_3_a56,
     author = {N. Gurappa and Pankaj K. Jha and Prasanta K. Panigrahi},
     title = {On the {Applications} of {a~New} {Technique} to {Solve} {Linear} {Differential} {Equations,} with and without {Source}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a56/}
}
TY  - JOUR
AU  - N. Gurappa
AU  - Pankaj K. Jha
AU  - Prasanta K. Panigrahi
TI  - On the Applications of a New Technique to Solve Linear Differential Equations, with and without Source
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a56/
LA  - en
ID  - SIGMA_2007_3_a56
ER  - 
%0 Journal Article
%A N. Gurappa
%A Pankaj K. Jha
%A Prasanta K. Panigrahi
%T On the Applications of a New Technique to Solve Linear Differential Equations, with and without Source
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a56/
%G en
%F SIGMA_2007_3_a56
N. Gurappa; Pankaj K. Jha; Prasanta K. Panigrahi. On the Applications of a New Technique to Solve Linear Differential Equations, with and without Source. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a56/

[1] Adomian G., Solving Frontier Problems of physics: the decomposition method, Kluwer, Dordrecht, 1994 | MR | Zbl

[2] Atre R., Mohapatra C. S., Panigrahi P. K., “Finding exact and approximate wave functions of Hooke's atom, their information entropy and correlation”, Phys. Lett. A, 361 (2007), 33–38 | DOI | Zbl

[3] Christ N. H., Lee T. D., “Quantum expansion of soliton solutions”, Phys. Rev. D, 12 (1975), 1606–1627 | DOI | MR

[4] Gradshteyn I. S., Ryzhik I. M., Tables of integrals, series and products, Academic Press Inc., 1965 | MR

[5] Gurappa N., Khare A., Panigrah P. K., “Connection between Calogero–Marchioro–Wolfes type few-body models and free oscillators”, Phys. Lett. A, 244 (1998), 467–472 ; cond-mat/9804207 | DOI

[6] Gurappa N., Panigrahi P. K., “Free harmonic oscillators, Jack polynomials, and Calogero–Sutherland systems”, Phys. Rev. B, 62 (2000), 1943–1949 ; hep-th/9910123 | DOI

[7] Gurappa N., Panigrahi P. K., “On polynomial solutions of the Heun equation”, J. Phys. A: Math. Gen., 37 (2004), L605–L608 ; math-ph/0410015 | DOI | MR | Zbl

[8] Gurappa N., Panigrahi P. K., Shreecharan T., “A new perspective on single and multi-variate differential equations”, J. Comput. Appl. Math., 160 (2003), 103–112 | DOI | MR | Zbl

[9] Jatkar D. P., Kumar C. N., Khare A., “A quasi-exactly solvable problem without $SL(2)$ symmetry”, Phys. Lett. A, 142 (1989), 200–202 | DOI | MR