@article{SIGMA_2007_3_a54,
author = {Ivan Kachuryk and Anatoliy Klimyk},
title = {Eigenfunction {Expansions} of {Functions} {Describing} {Systems} with {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a54/}
}
TY - JOUR AU - Ivan Kachuryk AU - Anatoliy Klimyk TI - Eigenfunction Expansions of Functions Describing Systems with Symmetries JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a54/ LA - en ID - SIGMA_2007_3_a54 ER -
Ivan Kachuryk; Anatoliy Klimyk. Eigenfunction Expansions of Functions Describing Systems with Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a54/
[1] Fushchych W. I., Nikitin A. G., Symmetries of equations of quantum mechanics, Allerton Press, New York, 1994 | MR
[2] Sitenko G. A., Scattering theory, Springer, Berlin, 1985
[3] Vilenkin N. Ja., Klimyk A. U., Group representation and special functions, Vol. II, Kluwer, Dordrecht, 1993 | MR | Zbl
[4] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of discrete variables, Nauka, Moscow, 1985 (in Russian) | MR
[5] Smirnov Yu. F., Shitikov K. V., “$K$-harmonic method and the model of shells”, Sov. J. Part. Nucl., 8 (1977), 847–910
[6] Filippov G. F., Ovcharenko V. I., Smirnov Yu. F., Microscopic theory of collective exitations of atomic nuclears, Naukova Dumka, Kiev, 1981 (in Russian)
[7] Vilenkin N. Ja., Klimyk A. U., Group representation and special functions, Vol. I, Kluwer, Dordrecht, 1991 | MR | Zbl
[8] Basu D., Wolf K. B., “The unitary irreducible representations of $SL(2,R)$ in all subgroup reductions”, J. Math. Phys., 23 (1982), 189–208 | DOI | MR
[9] Vilenkin N. Ja., Smorodinsky Ja. A., “Invariant expansion of relativistic amplitudes”, Soviet Physics JETP, 19 (1964), 1209–1218 | MR
[10] Winternitz P., Smorodinsky Yu. A., Sheftel M. R., “Poincaré and Lorentz invariant expansions of relativistic amplitudes”, Yadernaya Fizika, 7 (1968), 1325–1338
[11] Winternitz P., Two variable expansions based on the Lorentz and conformal groups, Lectures in Theoretical Physics, eds. A. O. Barut and W. E. Brittin, Colorado University Press, Boulder, 1971
[12] Kalnins E. G., Patera J., Sharp R. T., Winternitz P., “Two variable Galilei-group expansion of nonrelativistic scattering amplitudes”, Phys. Rev. D, 8 (1973), 2552–2572 | DOI | MR
[13] Winternitz P., Poincaré groups, its little subgroups and their applications in particle physics, Lectures at the Summer School on Group Representations and Quantum Theory, Dublin, 1969
[14] Winternitz P., Lucac I., Smorodinsky Yu. A., “Quantum numbers in the little groups of the Poincaré group”, Yadernaya Fizika, 7 (1968), 192–201
[15] Warner G., Harmonic analysis on semisimple Lie groups, Vols. 1, 2, Springer, Berlin, 1972
[16] Helgason S., Differential geometry Lie groups, and symmetric spaces, Academic Press, New York, 1978 | MR | Zbl
[17] Klimyk A. U., Kachurik I. I., Computation methods in theory of group representations, Vyshcha Shkola, Kiev, 1986 (in Russian) | MR
[18] Vilenkin N. Ja., Klimyk A. U., Group representation and special functions, Vol. III, Kluwer, Dordrecht, 1992 | MR | Zbl
[19] Vilenkin N. Ja., Klimyk A. U., Group representation and special functions. Recent advances, Kluwer, Dordrecht, 1995 | MR
[20] Erdelyi A., Magnus W., Oberheittinger F., Tricomi F., Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953
[21] Erdelyi A., Magnus W., Oberheittinger F., Tricomi F., Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1954
[22] Boyer C. P., “Matrix elements for the most degenerate principal series of representations of $SO_0(p,1)$”, J. Math. Phys., 12 (1971), 1599–1603 | DOI | MR | Zbl
[23] Varlamov V. V., “Spherical functions on the de Sitter group”, J. Phys. A: Math. Teor., 40 (2007), 163–201 ; math-ph/0604026 | DOI | MR | Zbl
[24] Gel'fand I. M., Graev M. I., “Applications of the method of orispheres to spectral analysis of functions on real and imaginary Lobachevsky spaces”, Trudy Moscow Math. Soc., 11, 1962, 243–308 | MR
[25] Vilenkin N. Ja., Special functions and the theory of group representations, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl
[26] Thomas L. H., “On unitary representations of the group of de Sitter space”, Ann. Math., 51 (1941), 113–126 | DOI | MR
[27] Newton T. D., “A note on the representations of the de Sitter group”, Ann. Math., 60 (1950), 730–733 | DOI | MR
[28] Dixmier J., “Representations integrable du groupe de De Sitter”, Bull. Soc. Math. France, 89 (1961), 9–41 | MR | Zbl
[29] Takahashi R., “Sur les representations unitaire des groupes de Lorentz generalises”, Bull. Soc. Math. France, 91 (1963), 289–433 | MR | Zbl
[30] Hirai T., “On irreducible representations of the Lorentz group of $n$-th order”, Proc. Japan Acad., 38 (1962), 258–262 | DOI | MR | Zbl
[31] Gurseiy F., Group theoretical concepts and methods in elementary particle physics, Gordon and Breach, New York, 1964
[32] Fronsdal C., “Elementary particles in a curved space”, Rev. Mod. Phys., 37 (1965), 221–224 | DOI | MR
[33] Malkin I. A., Man'ko V. I., Dynamical symmetries and coherent states of quantum systems, Nauka, Moscow, 1979 (in Russian) | MR
[34] Barut A. O., Bohm A., “Dynamical groups and mass formulas”, Phys. Rev. B, 139 (1965), 1107–1112 | DOI | MR
[35] Kachuryk I. I., “Invariant expansions of solutions of 5-dimensional Klein–Gordon equation”, Ukrainian Phys. J., 21 (1976), 1853–1862 | MR
[36] Hirai T., “The Plancherel formula for the Lorentz group of $n$-th order”, Proc. Japan Acad., 42 (1966), 323–326 | DOI | MR | Zbl
[37] Limic N., Niederle J., Raczka R., “Continuous degenerate representations of noncompact rotation groups”, J. Math. Phys., 7 (1966), 2026–2035 | DOI | MR | Zbl
[38] Maurin K., General eigenfunction expansions and unitary representations of topological groups, PWN, Warszawa, 1968 | MR | Zbl
[39] Gel'fand I. M., Graev M. I., Vilenkin N. Ja., Integral geometry and related problems in the theory of representations, Vol. 5. Generalized functions, Academic Press, New York, 1966
[40] Gradshtein I. S., Ryzhik I. M., Table of integrals, series and products, Academic Press, New York, 1980 | MR
[41] Ablamowitz M., Stegun I. A. (ed.), Handbook on special functions, National Bureau of Standards, New York, 1964
[42] Zhelobenko D. P., Compact Lie groups and their representations, Amer. Math. Soc., Providence, RI, 1973 | MR | Zbl
[43] Knapp A. W., Representation theory of semisimple Lie groups. An overview based on examples, Princeton Univ. Press, Princeton, NJ, 1986 | MR | Zbl
[44] Klimyk A. U., Representation matrix elements and Clebsch–Gordan coefficients, Naukova Dumka, Kiev, 1979 (in Russian) | MR | Zbl
[45] Berger M., “Les espaces symmetriques non compacts”, Ann. Ecole Norm. Sup., 74 (1957), 85–177 | MR
[46] Oshima T., Sekiguchi J., “Eigenspaces of invariant differential operators on an affine symmetric space”, Invent. Math., 57 (1980), 1–81 | DOI | MR | Zbl
[47] Muracami S., “Sur la classification des algebres de Lie reelles et simples”, Osaka J. Math., 2 (1965), 291–307 | MR
[48] Bruhat F., “Sur les representations induites des groupes de Lie”, Bull. Soc. Math. France, 84 (1956), 97–207 | MR
[49] Matsuki T., “The orbits of affine symmetric spaces under the action of minimal parabolic subgroups”, J. Math. Soc. Jap., 31 (1981), 331–357 | DOI | MR
[50] Helgason S., “A duality for symmetric spaces, with applications to group representations”, Adv. Math., 5 (1970), 1–154 | DOI | MR | Zbl
[51] Helgason S., Geometric analysis on symmetric spaces, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[52] Harish-Chandra, “Harmonic analysis on the real reductive groups”, Ann. Math., 104 (1976), 117–201 | DOI | MR | Zbl