@article{SIGMA_2007_3_a53,
author = {Alexander Sakhnovich},
title = {B\"acklund{\textendash}Darboux {Transformation} for {Non-Isospectral} {Canonical} {System} and {Riemann{\textendash}Hilbert} {Problem}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a53/}
}
TY - JOUR AU - Alexander Sakhnovich TI - Bäcklund–Darboux Transformation for Non-Isospectral Canonical System and Riemann–Hilbert Problem JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a53/ LA - en ID - SIGMA_2007_3_a53 ER -
%0 Journal Article %A Alexander Sakhnovich %T Bäcklund–Darboux Transformation for Non-Isospectral Canonical System and Riemann–Hilbert Problem %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a53/ %G en %F SIGMA_2007_3_a53
Alexander Sakhnovich. Bäcklund–Darboux Transformation for Non-Isospectral Canonical System and Riemann–Hilbert Problem. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a53/
[1] Cieslinski J., “An effective method to compute $N$-fold Darboux matrix and $N$-soliton surfaces”, J. Math. Phys., 32 (1991), 2395–2399 | DOI | MR | Zbl
[2] Deift P., “Applications of a commutation formula”, Duke Math. J., 45 (1978), 267–310 | DOI | MR | Zbl
[3] Deift P., Its A., Zhou X., “A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics”, Ann. of Math. (2), 146 (1997), 149–235 | DOI | MR | Zbl
[4] Deift P. A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, AMS, Providence, RI, 1999 | MR
[5] Fritzsche B., Kirstein B., Sakhnovich A. L., “Completion problems and scattering problems for Dirac type differential equations with singularities”, J. Math. Anal. Appl., 317 (2006), 510–525 ; math.SP/0409424 | DOI | MR | Zbl
[6] Gesztesy F., “A complete spectral characterization of the double commutation method”, J. Funct. Anal., 117 (1993), 401–446 | DOI | MR | Zbl
[7] Gohberg I., Kaashoek M. A., Sakhnovich A. L., “Scattering problems for a canonical system with a pseudo-exponential potential”, Asymptotic Analysis, 29 (2002), 1–38 | MR | Zbl
[8] Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems, Math. Phys. Stud., 26, Springer, Dordrecht, 2005 | MR
[9] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37 (2004), 8495–8512 ; nlin.SI/0403028 | DOI | MR | Zbl
[10] Kuznetsov V. B., Salerno M., Sklyanin E. K., “Quantum Bäcklund transformation for the integrable DST model”, J. Phys. A: Math. Gen., 33 (2000), 171–189 ; solv-int/9908002 | DOI | MR | Zbl
[11] Marchenko V. A., Nonlinear equations and operator algebras, Reidel Publishing Co., Dordrecht, 1988 | MR | Zbl
[12] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer, Berlin, 1991 | MR
[13] Miura R. (ed.), Bäcklund transformations, Lecture Notes in Math., 515, Springer, Berlin, 1976 | MR | Zbl
[14] Sakhnovich A.L., “Iterated Bäcklund–Darboux transformation and transfer matrix-function (nonisospectral case)”, Chaos Solitons Fractals, 7 (1996), 1251–1259 | DOI | MR | Zbl
[15] Sakhnovich A. L., “Iterated Bäcklund–Darboux transform for canonical systems”, J. Funct. Anal., 144 (1997), 359–370 | DOI | MR | Zbl
[16] Sakhnovich L. A., “Operators, similar to unitary operators, with absolutely continuous spectrum”, Funct. Anal. Appl., 2:1 (1968), 48–60 | DOI | MR
[17] Sakhnovich L. A., “On the factorization of the transfer matrix function”, Sov. Math. Dokl., 17 (1976), 203–207 | Zbl
[18] Sakhnovich L. A., “Factorisation problems and operator identities”, Russian Math. Surv., 41:1 (1986), 1–64 | DOI | MR | Zbl
[19] Sakhnovich L. A., Spectral theory of canonical differential systems. Method of operator identities, Oper. Theory Adv. Appl., 107, Birkhäuser, Basel – Boston, 1999 | MR | Zbl
[20] Sakhnovich L. A., “Integrable operators and canonical differential systems”, Math. Nachr., 280 (2007), 205–220 ; math.FA/0403490 | DOI | MR | Zbl
[21] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, AMS, Providence, RI, 2000 | MR
[22] Wiener N., Extrapolation, interpolation, and smoothing of stationary time series, Chapman and Hall Ltd., London, 1949 | MR | Zbl
[23] Zakharov V. E., Mikhailov A. V., “On the integrability of classical spinor models in two-dimensional space-time”, Comm. Math. Phys., 74 (1980), 21–40 | DOI | MR