Lie Symmetries and Criticality of Semilinear Differential Systems
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the notion of criticality of semilinear differential equations and systems, its relations to scaling transformations and the Noether approach to Pokhozhaev's identities. For this purpose we propose a definition for criticality based on the S. Lie symmetry theory. We show that this definition is compatible with the well-known notion of critical exponent by considering various examples. We also review some related recent papers.
Keywords: Pokhozhaev identities; Noether identity; critical exponents.
@article{SIGMA_2007_3_a52,
     author = {Yuri Bozhkov and Enzo Mitidieri},
     title = {Lie {Symmetries} and {Criticality} of {Semilinear} {Differential} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a52/}
}
TY  - JOUR
AU  - Yuri Bozhkov
AU  - Enzo Mitidieri
TI  - Lie Symmetries and Criticality of Semilinear Differential Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a52/
LA  - en
ID  - SIGMA_2007_3_a52
ER  - 
%0 Journal Article
%A Yuri Bozhkov
%A Enzo Mitidieri
%T Lie Symmetries and Criticality of Semilinear Differential Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a52/
%G en
%F SIGMA_2007_3_a52
Yuri Bozhkov; Enzo Mitidieri. Lie Symmetries and Criticality of Semilinear Differential Systems. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a52/

[1] Anco S. C., Ivanova N. M., “Conservation laws and symmetries of semilinear radial wave equations”, J. Math. Anal. Appl., 332:2 (2007), 863–876 ; math-ph/0608037 | DOI | MR | Zbl

[2] Anco S. C., Liu S., “Exact solutions of semilinear radial wave equations in $n$ dimensions”, J. Math. Anal. Appl., 297 (2004), 317–342 ; math-ph/0309049 | DOI | MR | Zbl

[3] Baouendi M. S., “Sur une classe d'operateurs elliptique dégénérés”, Bull. Soc. Math. France, 95 (1967), 45–87 | MR | Zbl

[4] Bliss G., “An integral inequality”, J. London Math. Soc., 5 (1930), 40–46 | DOI | Zbl

[5] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, New York, 1989 | MR | Zbl

[6] Bozhkov Y. D., “Noether symmetries and critical exponents”, SIGMA, 1 (2005), 022, 12 pp., ages ; nlin.SI/0511058 | MR | Zbl

[7] Bozhkov Y. D., “Divergence symmetries of semilinear polyharmonic equations involving critical nonlinearities”, J. Differential Equations, 225 (2006), 666–684 | DOI | MR | Zbl

[8] Bozhkov Y. D., Freire I. L., “Group classification of semilinear Kohn–Laplace equations”, Nonlinear Anal., 68:9 (2008), 2552–2568 | DOI | MR | Zbl

[9] Bozhkov Y. D., Freire I. L., Divergence symmetries of critical Kohn–Laplace equations on Heisenberg groups, Diff. Uravn., to appear

[10] Bozhkov Y. D., Gilli Martins A. C., “On the symmetry group of a differential equation and the Liouville–Gelfand problem”, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 34 (2002), 103–120 | MR | Zbl

[11] Bozhkov Y. D., Gilli Martins A. C., “Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents”, Nonlinear Anal., 57 (2004), 773–793 | DOI | MR

[12] Bozhkov Y. D., Gilli Martins A. C., “Lie point symmetries of the Lane–Emden system”, J. Math. Anal. Appl., 294 (2004), 334–344 | DOI | MR | Zbl

[13] Bozhkov Y. D., Mitidieri E., “The Noether approach to Pokhozhaev's identities”, Mediterr. J. Math., 4:4 (2007), 383–405 | DOI | MR | Zbl

[14] Caffarelli L. A., Gidas B., Spruck J., “Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth”, Comm. Pure Appl. Math., 42 (1989), 271–297 | DOI | MR | Zbl

[15] Clément P., de Figueiredo D. G., Mitidieri E., “Quasilinear elliptic equations with critical exponents”, Topol. Methods Nonlinear Anal., 7 (1996), 133–170 | MR | Zbl

[16] Clément P., Felmer P., Mitidieri E., “Homoclinic orbits for a class of infinite-dimensional Hamiltonian systems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 367–393 | MR | Zbl

[17] Clément P., van der Vorst R. C. A. M., “On the non-existence of homoclinic orbits for a class of infinite-dimensional Hamiltonian systems”, Proc. Amer. Math. Soc., 125 (1997), 1167–1176 | DOI | MR | Zbl

[18] D'Ambrosio L., “Hardy inequalities related to Grushin type operators”, Proc. Amer. Math. Soc., 132 (2004), 725–734 | DOI | MR

[19] Garofalo N., Lanconelli E., “Existence and nonexistence results for semilinear equations on the Heisenberg group”, Indiana Univ. Math. J., 41 (1992), 71–98 | DOI | MR | Zbl

[20] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl

[21] Grushin V. V., “On a class of hypoelliptic operators”, Math. Sbornik USSR, 12:3 (1970), 458–476 | DOI

[22] Guedda M., Veron L., “Quasilinear elliptic equations involving critical Sobolev exponents”, Nonlinear Anal., 13 (1989), 879–902 | DOI | MR | Zbl

[23] Ibragimov N. H., “Noether's identity”, Dinamika Sploshnoy Sredy, 38 (1979), 26–32 (in Russian) | MR

[24] Ibragimov N. H., Transformation groups applied to mathematical physics, D. Reidel Publishing Co., Dordrecht, 1985 | MR | Zbl

[25] Mitidieri E., A Rellich identity and applications, 25, Univ. Udine, 1990, 1–35

[26] Mitidieri E., “A Rellich type identity and applications”, Commun. Partial Differential Equations, 18 (1993), 125–151 | DOI | MR | Zbl

[27] Mitidieri E., “Nonexistence of positive solutions of semilinear elliptic systems in $R^N$”, Differential Integral Equations, 9 (1996), 465–479 | MR | Zbl

[28] Mitidieri E., Pokhozhaev S. I., “A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234, 2001, 1–383 | MR

[29] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR

[30] Ovsiannikov L., Group analysis of differential equations, Academic Press, London, 1982 | MR | Zbl

[31] Soviet Math. Dokl., 6 (1965), 1408–1411 | MR | Zbl

[32] Math. USSR Sbornik, 11:2 (1970), 171–188 | DOI | MR | MR | Zbl

[33] Pohozaev S. I., Veron L., “Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group”, Manuscripta Math., 102 (2000), 85–99 | DOI | MR | Zbl

[34] Pucci P., Serrin S., “A general variational identity”, Indiana Univ. Math. J., 35 (1986), 681–703 | DOI | MR | Zbl

[35] Pucci P., Serrin S., “Critical exponents and critical dimensions for polyharmonic operators”, J. Math. Pures Appl. (9), 69 (1990), 55–83 | MR | Zbl

[36] Serrin J., Zou H., “Non-existence of positive solutions of semilinear elliptic systems”, Discourses Math. Appl., 3 (1994), 55–68 | MR | Zbl

[37] Serrin J., Zou H., “Non-existence of positive solutions of the Lane–Emden systems”, Differential Integral Equations, 9 (1996), 635–653 | MR | Zbl

[38] Serrin J., Zou H., “Existence of positive solutions of the Lane–Emden systems”, Atti Sem. Mat. Fis. Univ. Modena, 46, suppl. (1998), 369–380 | MR | Zbl

[39] van der Vorst R. C. A. M., “Variational identities and applications to differential systems”, Arch. Rational Mech. Anal., 116 (1992), 375–398 | DOI | MR