@article{SIGMA_2007_3_a51,
author = {Charles F. Dunkl},
title = {Polynomials {Associated} with {Dihedral} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a51/}
}
Charles F. Dunkl. Polynomials Associated with Dihedral Groups. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a51/
[1] Berenstein A., Burman Y., Quasiharmonic polynomials for Coxeter groups and representations of Cherednik algebras, math.RT/0505173 | MR
[2] Dunkl C., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[3] Dunkl C., “Poisson and Cauchy kernels for orthogonal polynomials with dihedral symmetry”, J. Math. Anal. Appl., 143 (1989), 459–470 | DOI | MR | Zbl
[4] Dunkl C., “Operators commuting with Coxeter group actions on polynomials”, Invariant Theory and Tableaux, ed. D. Stanton, Springer, Berlin – Heidelberg – New York, 1990, 107–117 | MR
[5] Dunkl C., “Integral kernels with reflection group invariance”, Can. J. Math., 43 (1991), 1213–1227 | MR | Zbl
[6] Dunkl C., de Jeu M., Opdam E., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl
[7] Dunkl C., Xu Y., Orthogonal polynomials of several variables, Encycl. of Math. and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[8] Rösler M., “Positivity of Dunkl's intertwining operator”, Duke Math. J., 98 (1999), 445–463 ; q-alg/9710029 | DOI | MR | Zbl
[9] Scalas F., “Poisson integrals associated to Dunkl operators for dihedral groups”, Proc. Amer. Math. Soc., 133 (2005), 1713–1720 | DOI | MR | Zbl
[10] Xu Y., “Intertwining operator and $h$-harmonics associated with reflection groups”, Can. J. Math., 50 (1998), 193–208 | MR