Polynomials Associated with Dihedral Groups
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There is a commutative algebra of differential-difference operators, with two parameters, associated to any dihedral group with an even number of reflections. The intertwining operator relates this algebra to the algebra of partial derivatives. This paper presents an explicit form of the action of the intertwining operator on polynomials by use of harmonic and Jacobi polynomials. The last section of the paper deals with parameter values for which the formulae have singularities.
Keywords: intertwining operator; Jacobi polynomials.
@article{SIGMA_2007_3_a51,
     author = {Charles F. Dunkl},
     title = {Polynomials {Associated} with {Dihedral} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a51/}
}
TY  - JOUR
AU  - Charles F. Dunkl
TI  - Polynomials Associated with Dihedral Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a51/
LA  - en
ID  - SIGMA_2007_3_a51
ER  - 
%0 Journal Article
%A Charles F. Dunkl
%T Polynomials Associated with Dihedral Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a51/
%G en
%F SIGMA_2007_3_a51
Charles F. Dunkl. Polynomials Associated with Dihedral Groups. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a51/

[1] Berenstein A., Burman Y., Quasiharmonic polynomials for Coxeter groups and representations of Cherednik algebras, math.RT/0505173 | MR

[2] Dunkl C., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[3] Dunkl C., “Poisson and Cauchy kernels for orthogonal polynomials with dihedral symmetry”, J. Math. Anal. Appl., 143 (1989), 459–470 | DOI | MR | Zbl

[4] Dunkl C., “Operators commuting with Coxeter group actions on polynomials”, Invariant Theory and Tableaux, ed. D. Stanton, Springer, Berlin – Heidelberg – New York, 1990, 107–117 | MR

[5] Dunkl C., “Integral kernels with reflection group invariance”, Can. J. Math., 43 (1991), 1213–1227 | MR | Zbl

[6] Dunkl C., de Jeu M., Opdam E., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl

[7] Dunkl C., Xu Y., Orthogonal polynomials of several variables, Encycl. of Math. and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[8] Rösler M., “Positivity of Dunkl's intertwining operator”, Duke Math. J., 98 (1999), 445–463 ; q-alg/9710029 | DOI | MR | Zbl

[9] Scalas F., “Poisson integrals associated to Dunkl operators for dihedral groups”, Proc. Amer. Math. Soc., 133 (2005), 1713–1720 | DOI | MR | Zbl

[10] Xu Y., “Intertwining operator and $h$-harmonics associated with reflection groups”, Can. J. Math., 50 (1998), 193–208 | MR