@article{SIGMA_2007_3_a50,
author = {Francesco Fass\`o and Andrea Giacobbe},
title = {Geometry of {Invariant} {Tori} of {Certain} {Integrable} {Systems} with {Symmetry} and an {Application} to {a~Nonholonomic}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a50/}
}
TY - JOUR AU - Francesco Fassò AU - Andrea Giacobbe TI - Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a50/ LA - en ID - SIGMA_2007_3_a50 ER -
%0 Journal Article %A Francesco Fassò %A Andrea Giacobbe %T Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a50/ %G en %F SIGMA_2007_3_a50
Francesco Fassò; Andrea Giacobbe. Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a50/
[1] Blaom A. D., A geometric setting for Hamiltonian perturbation theory, Mem. Amer. Math. Soc., 153, no. 727, 2001, 1–112 | MR
[2] Bogoyavlenskij O. I., “Extended integrability and bi-Hamiltonian systems”, Comm. Math. Phys., 196 (1998), 19–51 | DOI | MR | Zbl
[3] Bröcker T., tom Dieck T., Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1995 | MR | Zbl
[4] Cushman R., Duistermaat J. J., “Non-Hamiltonian monodromy”, J. Differential Equations, 172 (2001), 42–58 | DOI | MR | Zbl
[5] Cushman R., Duistermaat H., Snyaticky J., Non-holonomic systems, in preparation
[6] Duistermaat J. J., “On global action-angle coordinates”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl
[7] Fassò F., “Superintegrable Hamiltonian systems: geometry and perturbations”, Acta Appl. Math., 87 (2005), 93–121 | DOI | MR | Zbl
[8] Fassò F., Giacobbe A., Sansonetto N., “Periodic flow, rank-two Poisson structures, and nonholonomic mechanics”, Regular Chaotic Mech., 19 (2005), 267–284 | DOI | MR
[9] Fedorov Yu. N., “Systems with an invariant measure on Lie groups”, Hamiltonian Systems with Three or More Degrees of Freedom (1995, S'Agarò), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, Kluwer, Dordrecht, 1999, 350–356 | MR | Zbl
[10] Field M., “Local structure of equivariant dynamics”, Singularity Theory and Its Applications, Part II (1988/1989, Coventry), Lecture Notes in Math., 1463, Springer, Berlin, 1991, 142–166 | MR
[11] Fomenko A. T., Trofimov V. V., Integrable systems on Lie algebras and symmetric spaces, Advanced Studies in Contemporary Mathematics, 2, Gordon and Breach Science Publishers, New York, 1988 | MR | Zbl
[12] Hermans J., Rolling rigid bodies with and without symmetries, PhD Thesis, University of Utrecht, 1995
[13] Hermans J., “A symmetric sphere rolling on a surface”, Nonlinearity, 8 (1995), 493–515 | DOI | MR | Zbl
[14] Karasev M. V., Maslov V. P., Nonlinear Poisson brackets. Geometry and quantization, Translations of the AMS, 119, AMS, Providence, R.I., 1993 | MR | Zbl
[15] Marsden J. E., Montgomery R., Ratiu T., Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88, no. 436, 1990 | MR
[16] Meigniez G., “Submersion, fibrations and bundles”, Trans. Amer. Math. Soc., 354 (2002), 3771–3787 | DOI | MR | Zbl
[17] Mischenko A. S., Fomenko A. T., “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI
[18] Routh E. J., Treatise on the dynamics of a system of rigid bodies (advanced part), Dover, New York, 1955 | MR | Zbl
[19] Zenkov D. V., “The geometry of the Routh problem”, J. Nonlinear Sci., 5 (1995), 503–519 | DOI | MR | Zbl
[20] Zung N. T., “Torus action and integrable systems”, Topological Methods in the Theory of Integrable Systems, eds. A. V. Bolsinov, A. T. Fomenko and A. A. Oshemkov, Cambridge Scientific Publications, 2006, 289–328 ; math.DS/0407455 | MR | Zbl