@article{SIGMA_2007_3_a5,
author = {Andreas Wipf and Thomas Heinzl and Tobias Kaestner and Christian Wozar},
title = {Generalized {Potts-Models} and their {Relevance} for {Gauge} {Theories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/}
}
TY - JOUR AU - Andreas Wipf AU - Thomas Heinzl AU - Tobias Kaestner AU - Christian Wozar TI - Generalized Potts-Models and their Relevance for Gauge Theories JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/ LA - en ID - SIGMA_2007_3_a5 ER -
%0 Journal Article %A Andreas Wipf %A Thomas Heinzl %A Tobias Kaestner %A Christian Wozar %T Generalized Potts-Models and their Relevance for Gauge Theories %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/ %G en %F SIGMA_2007_3_a5
Andreas Wipf; Thomas Heinzl; Tobias Kaestner; Christian Wozar. Generalized Potts-Models and their Relevance for Gauge Theories. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/
[1] Wozar C., Kaestner T., Wipf A., Heinzl T., Pozsgay B., “Phase structure of $Z_3$-Polyakov-loop models”, Phys. Rev. D, 74 (2006), 114501, 19 pp., ages ; hep-lat/0605012 | DOI | Zbl
[2] Yaffe L. G., Svetitsky B., “First order phase transition in the $SU(3)$ gauge theory at finite temperature”, Phys. Rev. D, 26 (1982), 963–965 | DOI | MR
[3] Bazavov A., Berg B. A., Velytsky A., “Glauber dynamics of phase transitions: $SU(3)$ lattice gauge theory”, Phys. Rev. D, 74 (2006), 014501, 12 pp., ages ; hep-lat/0605001 | DOI
[4] Ashkin J., Teller E., “Statistics of two-dimensional lattices with four components”, Phys. Rev., 64 (1942), 178–184 | DOI
[5] Potts R. B., “Some generalized order-disorder transformations”, Proc. Camb. Phil. Soc., 48 (1952), 106–109 | DOI | MR | Zbl
[6] Wu F. Y., “The Potts model”, Rev. Modern Phys., 54 (1982), 235–268 | DOI | MR
[7] Yamaguchi C., Okabe Y., “Three-dimensional antiferromagnetic $q$-state Potts models: application of the Wang–Landau algorithm”, J. Phys. A: Math. Gen., 34 (2001), 8781–8794 ; cond-mat/0108540 | DOI | MR | Zbl
[8] Harris A. B., Mouritsen O. G., Berlinsky A. J., “Pinwheel and herringbone structures of planar rotors with anisotropic interactions on a triangular lattice with vacancies”, Can. J. Phys., 62 (1984), 915–934
[9] Roepstorff G., Path integral approach to quantum physics, Springer, 1994 | MR | Zbl
[10] O'Raifeartaigh L., Wipf A., Yoneyama H., “The constraint effective potential”, Nuclear Phys. B, 271 (1986), 653–680 | DOI | MR
[11] Fujimoto Y., Yoneyama H., Wipf A., “Symmetry restoration of scalar models at finite temperature”, Phys. Rev. D, 38 (1988), 2625–2634 | DOI
[12] Holland K., Wiese U.-J., “The center symmetry and its spontaneous breakdown at high temperatures”, At the Frontier of Particle Physics – Handbook of QCD, Vol. 3, ed. M. Shifman, World Scientific, Singapore, 2001, 1909–1944; hep-ph/0011193
[13] Buss G., Analytische Aspekte effektiver $SU(N)$-Gittereichtheorien, Diploma Thesis, Jena, 2004
[14] Engels J., Mashkevich S., Scheideler T., Zinovjev G., “Critical behaviour of $SU(2)$ lattice gauge theory. A complete analysis with the $\chi^2$-method”, Phys. Rev. B, 365 (1996), 219–224; hep-lat/9509091
[15] Gliozzi F., Necco S., Critical exponents for higher-representation sources in $3d$ $SU(3)$ gauge theory from CFT, hep-th/0605285 | MR
[16] Heinzl T., Kaestner T., Wipf A., “Effective actions for the $SU(2)$ conf/inement-deconfinement phase transition”, Phys. Rev. D, 72 (2005), 065005, 14 pp., ages ; hep-lat/0502013 | DOI
[17] Polonyi J., Szlachanyi K., “Phase transition from strong coupling expansion”, Phys. Lett. B, 110 (1982), 395–398 | DOI
[18] Carlsson J., McKellar B., “$SU(N)$ Glueball masses in 2+1 dimensions”, Phys. Rev. D, 68 (2003), 074502, 18 pp., ages ; hep-lat/0303016 | DOI
[19] Meinel R., Uhlmann S., Wipf A., Ward identities for invariant group integrals, hep-th/0611170 | MR
[20] Wang J. S., Swendsen R. H., Kotecky R., “Three-state antiferromagnetic Potts models: a Monte Carlo study”, Phys. Rev. B, 42 (1990), 2465–2474 | DOI
[21] Lawrie I., Sarbach S., “Theorie of tricritical points”, Phase Transitions and Critical Phenomena, Vol. 9, eds. C. Domb and J. Lebowitz, Academic Press, 1984, 2–155 | MR
[22] Landau D., Swendsen R., “Monte Carlo renormalization-group study of tricritical behavior in two dimensions”, Phys. Rev. B, 33 (1986), 7700–7707 | DOI
[23] Dittmann L., Heinzl T., Wipf A., “An effective lattice theory for Polyakov loops”, JHEP, 0406 (2004), 005, 27 pp., ages ; hep-lat/0306032 | DOI
[24] Heinzl T., Kaestner T., Wipf A., Wozar C., $SU(3)$ effective Polyakov-loop dynamics, in preparation
[25] Kim S., de Forcrand Ph., Kratochvila S., Takaishi T., “The 3-state Potts model as a heavy quark finite density laboratory”, 166, PoSLAT2005, 2006, 6 pp., ages; hep-lat/0510069