Generalized Potts-Models and their Relevance for Gauge Theories
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Polyakov loop dynamics originating from finite-temperature Yang–Mills theory. The effective actions contain center-symmetric terms involving powers of the Polyakov loop, each with its own coupling. For a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and antiferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents $\nu$ and $\gamma$ at the continuous transition between symmetric and antiferromagnetic phases are the same as for the 3-state spin Potts model.
Keywords: gauge theories; Potts models; Polyakov loop dynamics; mean field approximation; Monte Carlo simulations.
@article{SIGMA_2007_3_a5,
     author = {Andreas Wipf and Thomas Heinzl and Tobias Kaestner and Christian Wozar},
     title = {Generalized {Potts-Models} and their {Relevance} for {Gauge} {Theories}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/}
}
TY  - JOUR
AU  - Andreas Wipf
AU  - Thomas Heinzl
AU  - Tobias Kaestner
AU  - Christian Wozar
TI  - Generalized Potts-Models and their Relevance for Gauge Theories
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/
LA  - en
ID  - SIGMA_2007_3_a5
ER  - 
%0 Journal Article
%A Andreas Wipf
%A Thomas Heinzl
%A Tobias Kaestner
%A Christian Wozar
%T Generalized Potts-Models and their Relevance for Gauge Theories
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/
%G en
%F SIGMA_2007_3_a5
Andreas Wipf; Thomas Heinzl; Tobias Kaestner; Christian Wozar. Generalized Potts-Models and their Relevance for Gauge Theories. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a5/

[1] Wozar C., Kaestner T., Wipf A., Heinzl T., Pozsgay B., “Phase structure of $Z_3$-Polyakov-loop models”, Phys. Rev. D, 74 (2006), 114501, 19 pp., ages ; hep-lat/0605012 | DOI | Zbl

[2] Yaffe L. G., Svetitsky B., “First order phase transition in the $SU(3)$ gauge theory at finite temperature”, Phys. Rev. D, 26 (1982), 963–965 | DOI | MR

[3] Bazavov A., Berg B. A., Velytsky A., “Glauber dynamics of phase transitions: $SU(3)$ lattice gauge theory”, Phys. Rev. D, 74 (2006), 014501, 12 pp., ages ; hep-lat/0605001 | DOI

[4] Ashkin J., Teller E., “Statistics of two-dimensional lattices with four components”, Phys. Rev., 64 (1942), 178–184 | DOI

[5] Potts R. B., “Some generalized order-disorder transformations”, Proc. Camb. Phil. Soc., 48 (1952), 106–109 | DOI | MR | Zbl

[6] Wu F. Y., “The Potts model”, Rev. Modern Phys., 54 (1982), 235–268 | DOI | MR

[7] Yamaguchi C., Okabe Y., “Three-dimensional antiferromagnetic $q$-state Potts models: application of the Wang–Landau algorithm”, J. Phys. A: Math. Gen., 34 (2001), 8781–8794 ; cond-mat/0108540 | DOI | MR | Zbl

[8] Harris A. B., Mouritsen O. G., Berlinsky A. J., “Pinwheel and herringbone structures of planar rotors with anisotropic interactions on a triangular lattice with vacancies”, Can. J. Phys., 62 (1984), 915–934

[9] Roepstorff G., Path integral approach to quantum physics, Springer, 1994 | MR | Zbl

[10] O'Raifeartaigh L., Wipf A., Yoneyama H., “The constraint effective potential”, Nuclear Phys. B, 271 (1986), 653–680 | DOI | MR

[11] Fujimoto Y., Yoneyama H., Wipf A., “Symmetry restoration of scalar models at finite temperature”, Phys. Rev. D, 38 (1988), 2625–2634 | DOI

[12] Holland K., Wiese U.-J., “The center symmetry and its spontaneous breakdown at high temperatures”, At the Frontier of Particle Physics – Handbook of QCD, Vol. 3, ed. M. Shifman, World Scientific, Singapore, 2001, 1909–1944; hep-ph/0011193

[13] Buss G., Analytische Aspekte effektiver $SU(N)$-Gittereichtheorien, Diploma Thesis, Jena, 2004

[14] Engels J., Mashkevich S., Scheideler T., Zinovjev G., “Critical behaviour of $SU(2)$ lattice gauge theory. A complete analysis with the $\chi^2$-method”, Phys. Rev. B, 365 (1996), 219–224; hep-lat/9509091

[15] Gliozzi F., Necco S., Critical exponents for higher-representation sources in $3d$ $SU(3)$ gauge theory from CFT, hep-th/0605285 | MR

[16] Heinzl T., Kaestner T., Wipf A., “Effective actions for the $SU(2)$ conf/inement-deconfinement phase transition”, Phys. Rev. D, 72 (2005), 065005, 14 pp., ages ; hep-lat/0502013 | DOI

[17] Polonyi J., Szlachanyi K., “Phase transition from strong coupling expansion”, Phys. Lett. B, 110 (1982), 395–398 | DOI

[18] Carlsson J., McKellar B., “$SU(N)$ Glueball masses in 2+1 dimensions”, Phys. Rev. D, 68 (2003), 074502, 18 pp., ages ; hep-lat/0303016 | DOI

[19] Meinel R., Uhlmann S., Wipf A., Ward identities for invariant group integrals, hep-th/0611170 | MR

[20] Wang J. S., Swendsen R. H., Kotecky R., “Three-state antiferromagnetic Potts models: a Monte Carlo study”, Phys. Rev. B, 42 (1990), 2465–2474 | DOI

[21] Lawrie I., Sarbach S., “Theorie of tricritical points”, Phase Transitions and Critical Phenomena, Vol. 9, eds. C. Domb and J. Lebowitz, Academic Press, 1984, 2–155 | MR

[22] Landau D., Swendsen R., “Monte Carlo renormalization-group study of tricritical behavior in two dimensions”, Phys. Rev. B, 33 (1986), 7700–7707 | DOI

[23] Dittmann L., Heinzl T., Wipf A., “An effective lattice theory for Polyakov loops”, JHEP, 0406 (2004), 005, 27 pp., ages ; hep-lat/0306032 | DOI

[24] Heinzl T., Kaestner T., Wipf A., Wozar C., $SU(3)$ effective Polyakov-loop dynamics, in preparation

[25] Kim S., de Forcrand Ph., Kratochvila S., Takaishi T., “The 3-state Potts model as a heavy quark finite density laboratory”, 166, PoSLAT2005, 2006, 6 pp., ages; hep-lat/0510069