@article{SIGMA_2007_3_a49,
author = {Eduardo Mart{\'\i}nez},
title = {Lie {Algebroids} in {Classical} {Mechanics} and {Optimal} {Control}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a49/}
}
Eduardo Martínez. Lie Algebroids in Classical Mechanics and Optimal Control. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a49/
[1] Abraham R., Marsden J. E., Ratiu T. S., Manifolds, tensor analysis and applications, Addison-Wesley, 1983 | MR | Zbl
[2] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Amer. Math. Soc., Providence, RI, 1999 | Zbl
[3] Cariñena J. F., Martínez E., “Lie algebroid generalization of geometric mechanics”, Lie Algebroids and Related Topics in Differential Geometry (June 12–18, 2000, Warsaw), Banach Center Publications, 54, eds. J. Kubarski et al., Institute of Mathematics, Polish Academy of Sciences, Warsaw, 2001, 201–215 | MR | Zbl
[4] Cendra H., Ibort A., Marsden J. E., “Variational principal fiber bundles: a geometric theory of Clebsch potentials and Lin constraints”, J. Geom. Phys., 4 (1987), 183–206 | DOI | MR
[5] Cendra H., Marsden J. E., Ratiu T. S., Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152, no. 722, 2001 | MR
[6] Cendra H., Marsden J. E., Pekarsky S., Ratiu T. S., “Variational principles for Lie–Poisson and Hamilton–Poincaré equations”, Moscow Math. J., 3 (2003), 833–867 | MR | Zbl
[7] Cortés J., Martínez E., “Mechanical control systems on Lie algebroids”, IMA J. Math. Control. Inform., 21 (2004), 457–492 ; math.OC/0402437 | DOI | MR | Zbl
[8] Cortés J., de León M., Marrero J. C., Martínez E., Nonholonomic Lagrangian systems on Lie algebroids, math-ph/0512003
[9] Cortés J., de León M., Marrero J. C., Martín de Diego D., Martínez E., “A survey of Lagrangian mechanics and control on Lie algebroids and groupoids”, Int. J. Geom. Meth. Math. Phys., 3 (2006), 509–558 ; math-ph/0511009 | DOI | MR | Zbl
[10] Crainic M., Fernandes R. L., “Integrability of Lie brackets”, Ann. of Math. (2), 157 (2003), 575–620 ; math.DG/0105033 | DOI | MR | Zbl
[11] Klein J., “Espaces variationnels et mécanique”, Ann. Inst. Fourier, 12 (1962), 1–124 | MR | Zbl
[12] de León M., Marrero J. C., Martínez E., “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), R241–R308 ; math.DG/0407528 | DOI | MR | Zbl
[13] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, Cambridge University Press, 2005 | MR | Zbl
[14] Marrero J. C., Martín de Diego D., Martínez E., Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, math.DG/0506299
[15] Martínez E., “Lagrangian mechanics on Lie algebroids”, Acta Appl. Math., 67 (2001), 295–320 | DOI | MR | Zbl
[16] Martínez E., “Geometric formulation of mechanics on Lie algebroids”, Proceedings of the VIII Fall Workshop on Geometry and Physics (1999, Medina del Campo), Publicaciones de la RSME, 2, 2001, 209–222 | MR | Zbl
[17] Martínez E., “Reduction in optimal control theory”, Rep. Math. Phys., 53 (2004), 79–90 | DOI | MR | Zbl
[18] Martínez E., “Classical field theory on Lie algebroids: variational aspects”, J. Phys. A: Mat. Gen., 38 (2005), 7145–7160 ; math.DG/0410551 | DOI | MR | Zbl
[19] Martínez E., Classical field theory on Lie algebroids: multisymplectic formalism, math.DG/0411352
[20] Martínez E., Variational calculus on Lie algebroids, math.DG/0603028
[21] Martínez E., Mestdag T., Sarlet W., “Lie algebroid structures and Lagrangian systems on affine bundles”, J. Geom. Phys., 44 (2002), 70–95 ; math.DG/0203178 | DOI | MR | Zbl
[22] Piccione P., Tausk D., “Lagrangian and Hamiltonian formalism for constrained variational problems”, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1417–1437 ; math.OC/0004148 | MR | Zbl
[23] Pradines J., “Théorie de Lie pour les groupoides différentiables. Relations entre propriétés locales et globales”, C. R. Acad. Sci. Paris, Série A, 263 (1966), 907–910 | MR | Zbl
[24] Pradines J., “Théorie de Lie pour les groupoides différentiables. Calcul différenetiel dans la catégorie des groupoides infinitésimaux”, C. R. Acad. Sci. Paris, Série A, 264 (1967), 245–248 | MR | Zbl
[25] Weinstein A., “Lagrangian mechanics and groupoids”, Fields Inst. Commun., 7 (1996), 207–231 | MR | Zbl