Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the reduction procedure for a symplectic Lie algebroid by a Lie subalgebroid and a symmetry Lie group. Moreover, given an invariant Hamiltonian function we obtain the corresponding reduced Hamiltonian dynamics. Several examples illustrate the generality of the theory.
Keywords: Lie algebroids and subalgebroids; symplectic Lie algebroids; Hamiltonian dynamics; reduction procedure.
@article{SIGMA_2007_3_a48,
     author = {David Iglesias and Juan Carlos Marrero and David Mart{\'\i}n de Diego and Eduardo Mart{\'\i}nez and Edith Padr\'on},
     title = {Reduction of {Symplectic} {Lie} {Algebroids} by {a~Lie} {Subalgebroid} and {a~Symmetry} {Lie} {Group}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a48/}
}
TY  - JOUR
AU  - David Iglesias
AU  - Juan Carlos Marrero
AU  - David Martín de Diego
AU  - Eduardo Martínez
AU  - Edith Padrón
TI  - Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a48/
LA  - en
ID  - SIGMA_2007_3_a48
ER  - 
%0 Journal Article
%A David Iglesias
%A Juan Carlos Marrero
%A David Martín de Diego
%A Eduardo Martínez
%A Edith Padrón
%T Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a48/
%G en
%F SIGMA_2007_3_a48
David Iglesias; Juan Carlos Marrero; David Martín de Diego; Eduardo Martínez; Edith Padrón. Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a48/

[1] Bursztyn H., Cavalcanti G. R., Gualtieri M., “Reduction of Courant algebroids and generalized complex structures”, Adv. Math., 211:2 (2007), 726–765 ; math.DG/0509640 | DOI | MR | Zbl

[2] Cannas A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes Series, American Math. Soc., 1999 | MR | Zbl

[3] Cariñena J. F., Nunes da Costa J. M., Santos P., “Reduction of Lie algebroid structures”, Int. J. Geom. Methods Mod. Phys., 2 (2005), 965–991 | DOI | MR | Zbl

[4] Cushman R., Bates L., Global aspects of classical integrable systems, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[5] Dardié J. M., Medina A., “Double extension symplectique d'un groupe de Lie symplectique”, Adv. Math., 117 (1996), 208–227 | DOI | MR | Zbl

[6] Fernandes R. L., “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170 (2002), 119–179 ; math.DG/0007132 | DOI | MR | Zbl

[7] Gotay M. J., Tuynman G. M., “$R^{2n}$ is a universal symplectic manifold for reduction”, Lett. Math. Phys., 18 (1989), 55–59 | DOI | MR | Zbl

[8] Grabowska K., Urbanski P., Grabowski J., “Geometrical mechanics on algebroids”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559–576 ; math-ph/0509063 | DOI | MR

[9] Higgins P. J., Mackenzie K. C. H., “Algebraic constructions in the category of Lie algebroids”, J. Algebra, 129 (1990), 194–230 | DOI | MR | Zbl

[10] Iglesias D., Marrero J. C., Martín de Diego D., Martínez E., Padrón E., Marsden–Weinstein reduction for symplectic Lie algebroids, in progress

[11] de León M., Marrero J. C., Martínez E., “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), R241–R308 ; math.DG/0407528 | DOI | MR | Zbl

[12] Liu Z-J., Weinstein A., Xu P., “Manin triples for Lie bialgebroids”, J. Differential Geom., 45 (1997), 547–574 ; dg-ga/9508013 | MR | Zbl

[13] Mackenzie K., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, 2005 | MR | Zbl

[14] Mackenzie K., Xu P., “Lie bialgebroids and Poisson groupoids”, Duke Math. J., 73 (1994), 415–452 | DOI | MR | Zbl

[15] Lewis D., Ratiu T., Simo J. C., Marsden J. E., “The heavy top: a geometric treatment”, Nonlinearity, 5 (1992), 1–48 | DOI | MR

[16] Marsden J. E., Misiolek G., Ortega J.-P., Perlmutter M., Ratiu T., Hamiltonian reduction by stages, Preprint, 2007 | MR

[17] Marsden J. E., Ratiu T., “Reduction of Poisson manifolds”, Lett. Math. Phys., 11 (1986), 161–169 | DOI | MR | Zbl

[18] Marsden J. E., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl

[19] Martínez E., “Lagrangian mechanics on Lie algebroids”, Acta Appl. Math., 67 (2001), 295–320 | DOI | MR | Zbl

[20] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | MR | Zbl

[21] Weinstein A., “Lagrangian mechanics and groupoids”, Fields Inst. Commun., 7 (1996), 207–231 | MR | Zbl