Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Following the works by Wiegmann–Zabrodin, Elbau–Felder, Hedenmalm–Makarov, and others, we consider the normal matrix model with an arbitrary potential function, and explain how the problem of finding the support domain for the asymptotic eigenvalue density of such matrices (when the size of the matrices goes to infinity) is related to the problem of Hele–Shaw flows on curved surfaces, considered by Entov and the first author in 1990-s. In the case when the potential function is the sum of a rotationally invariant function and the real part of a polynomial of the complex coordinate, we use this relation and the conformal mapping method developed by Entov and the first author to find the shape of the support domain explicitly (up to finitely many undetermined parameters, which are to be found from a finite system of equations). In the case when the rotationally invariant function is $\beta |z|^2$, this is done by Wiegmann–Zabrodin and Elbau–Felder. We apply our results to the generalized normal matrix model, which deals with random block matrices that give rise to $*$-representations of the deformed preprojective algebra of the affine quiver of type $\hat A_{m-1}$. We show that this model is equivalent to the usual normal matrix model in the large $N$ limit. Thus the conformal mapping method can be applied to find explicitly the support domain for the generalized normal matrix model.
Keywords: Hele–Shaw flow; equilibrium measure; random normal matrices.
@article{SIGMA_2007_3_a47,
     author = {Pavel Etingof and Xiaoguang Ma},
     title = {Density of {Eigenvalues} of {Random} {Normal} {Matrices} with an {Arbitrary} {Potential,} and of {Generalized} {Normal} {Matrices}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a47/}
}
TY  - JOUR
AU  - Pavel Etingof
AU  - Xiaoguang Ma
TI  - Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a47/
LA  - en
ID  - SIGMA_2007_3_a47
ER  - 
%0 Journal Article
%A Pavel Etingof
%A Xiaoguang Ma
%T Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a47/
%G en
%F SIGMA_2007_3_a47
Pavel Etingof; Xiaoguang Ma. Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a47/

[1] Chau L.-L., Zaboronsky O., “On the structure of correlation functions in the normal matrix model”, Comm. Math. Phys., 196 (1998), 203–247 ; hep-th/9711091 | DOI | MR | Zbl

[2] Crawley-Boevey W., Holland M. P., “Noncommutative deformations of Kleinian singularities”, Duke Math. J., 92 (1998), 605–635 | DOI | MR | Zbl

[3] Elbau P., Felder G., “Density of eigenvalues of random normal matrices”, Comm. Math. Phys., 259 (2005), 433–450 ; math.QA/0406604 | DOI | MR | Zbl

[4] Entov V. M., Etingof P. I., “Viscous flows with time-dependent free boundaries in a non-planar Hele-Shaw cell”, Euro. J. Appl. Math., 8 (1997), 23–35 | MR | Zbl

[5] Hedenmalm H., Makarov N., Quantum Hele-Shaw flow, math.PR/0411437

[6] Kostov I. K., Krichever I., Mineev-Weinstein M., Wiegmann P. B., ZabrodinA., “The $\tau$-function for analytic curves”, Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ., 40, Cambridge Univ. Press, Cambridge, 2001, 285–299 | MR | Zbl

[7] Krichever I., Marshakov A., Zabrodin A., “Integrable structure of the Dirichlet boundary problem in multiply-connected domains”, Comm. Math. Phys., 259 (2005), 1–44 ; hep-th/0309010 | DOI | MR | Zbl

[8] Marshakov A., Wiegmann P. B., Zabrodin A.,, “Integrable structure of the Dirichlet boundary problem in two dimensions”, Comm. Math. Phys., 227 (2002), 131–153 ; hep-th/0109048 | DOI | MR | Zbl

[9] Oas G., “Universal cubic eigenvalue repulsion for random normal matrices”, Phys. Rev. E, 55 (1997), 205–211 ; cond-mat/9610073 | DOI

[10] Varchenko A. N., Etingof P. I., Why the boundary of a round drop becomes a curve of order four, AMS, Providence, 1992 | MR | Zbl

[11] Wiegmann P. B., Zabrodin A., “Conformal maps and integrable hierarchies”, Comm. Math. Phys., 213 (2000), 523–538 ; hep-th/9909147 | DOI | MR | Zbl

[12] Wiegmann P. B., Zabrodin A., “Large scale correlations in normal non-Hermitian matrix ensembles”, J. Phys. A: Math. Gen., 36 (2003), 3411–3424 ; hep-th/0210159 | DOI | MR | Zbl