@article{SIGMA_2007_3_a45,
author = {Evguenii Sinitsyn and Boris Zhilinskii},
title = {Qualitative {Analysis} of the {Classical} and {Quantum} {Manakov} {Top}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a45/}
}
Evguenii Sinitsyn; Boris Zhilinskii. Qualitative Analysis of the Classical and Quantum Manakov Top. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a45/
[1] Adler M., van Moerbeke P., “The Kowalewski and Hénon–Heiles motions as Manakov geodesic flows on $SO(4)$ – a two-dimensional family of Lax pairs”, Comm. Math. Phys., 113 (1988), 659–700 | DOI | MR
[2] Audin M., Spinning tops, Chapter 4, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[3] Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, London, 2004, Section 14 | MR | Zbl
[4] Cejnar P., Macek M., Heinze S., Jolie J., Dobes J., “Monodromy and excited-state quantum phase transitions in integrable systems: collective vibrations of nuclei”, J. Phys. A: Math. Gen., 39 (2006), L515–L521 | DOI | MR | Zbl
[5] Child M. S., Quantum monodromy and molecular spectroscopy, Adv. Chem. Phys., to appear
[6] Colin de Verdière Y., Vũ Ngọc S., “Singular Bohr–Sommerfeld rules for 2D integrable systems”, Ann. Sci. Ècole Norm. Sup. (4), 36 (2003), 1–55 ; math.AP/0005264 | MR | Zbl
[7] Cushman R. H., Bates L. M., Global aspects of classical integrable systems, Birkhäuser, Basel, 1997 | MR | Zbl
[8] Cushman R. H., Sadovskii D., “Monodromy in the hydrogen atom in crossed fields”, Phys. D, 142 (2000), 166–196 | DOI | MR | Zbl
[9] Davison C. M., Dullin H. R., Bolsinov A. V., Geodesics on the ellipsoid and monodromy, math-ph/0609073 | MR
[10] Davison C. M., Dullin H. R., Geodesic flow on three dimensional ellipsoids with equal semi-axes, math-ph/0611060 | MR
[11] Duistermaat J. J., “On global action angle coordinates”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl
[12] Efstathiou K., Cushman R. H., Sadovskii D. A., “Fractional monodromy in the $1:-2$ resonance”, Adv. Math., 209 (2007), 241–273 | DOI | MR | Zbl
[13] Efstathiou K., Sadovskii D., Zhilinskii B., “Analysis of rotation-vibration relative equilibria on the example of a tetrahedral four atom molecule”, SIAM J. Appl. Dyn. Syst., 3 (2004), 261–351 | DOI | MR | Zbl
[14] Grondin L., Sadovskii D., Zhilinskii B., “Monodromy in systems with coupled angular momenta and rearrangement of bands in quantum spectra”, Phys. Rev. A, 65 (2002), 012105, 15 pp., ages | DOI
[15] Kalnins E. G., Miller W. Jr., Winternitz P., “The group $O(4)$, separation of variables and the hydrogen atom”, SIAM J. Appl. Math., 30 (1976), 630–664 | DOI | MR | Zbl
[16] Komarov I. V., Kuznetsov V. B., “Quantum Euler–Manakov top on the 3-sphere $S_3$”, J. Phys. A: Math. Gen., 24 (1991), L737–L742 | DOI | MR | Zbl
[17] Leung N. C., Symington M.,, Almost toric symplectic four-manifolds, math.SG/0312165 | MR
[18] Manakov S. V., “Note on the integration of Euler's equation of the dynamics of an $N$ dimensional rigid body”, Funct. Anal. Appl., 10:4 (1976), 328–329 | DOI | MR
[19] Michel L., “Points critique des fonctions invariantes sur une $G$-varieté”, C. R. Math. Acad. Sci. Paris, 272 (1971), 433–436 | MR | Zbl
[20] Michel L., Zhilinskii B. I., “Symmetry, invariants, and topology. I. Basic tools”, Phys. Rep., 341 (2001), 11–84 | DOI | MR | Zbl
[21] Ne\t{kh}oroshev N. N., “Action-angle variables and their generalizations”, Tr. Mosk. Mat. Obs., 26, 1972, 180–198 | MR
[22] Ne\t{kh}oroshev N. N., Sadovskií D. A., Zhilinskií B. I., “Fractional monodromy of resonant classical and quantum oscillators”, C. R. Math. Acad. Sci. Paris, 335 (2002), 985–988 | MR
[23] Ne\t{kh}oroshev N. N., Sadovskii D., Zhilinskii B., “Fractional Hamiltonian monodromy”, Ann. Henri Poincaré, 7 (2006), 1099–1211 | DOI | MR
[24] Oshemkov A. A., “Topology of isoenergy surfaces and bifurcation diagrams for integrable cases of rigid body dynamics on $so(4)$”, Uspekhi Mat. Nauk, 42:6 (1987), 199–200 | MR
[25] Perelomov A. .M., Motion of four-dimensional rigid body around a fixed point: an elementary approach. I, math-ph/0502053 | MR
[26] Sadovskii D., Zhilinskii B.,, “Group theoretical and topological analysis of localized vibration-rotation states”, Phys. Rev. A, 47 (1993), 2653–2671 | DOI
[27] Sadovskii D., Zhilinskii B., “Monodromy, diabolic points, and angular momentum coupling”, Phys. Lett. A, 256 (1999), 235–244 | DOI | MR
[28] Sadovskii D., Zhilinskii B., “Quantum monodromy, its generalizations and molecular manifestations”, Mol. Phys., 104 (2006), 2595–2615 | DOI
[29] Sadovskii D., Zhilinskii B., “Hamiltonian systems with detuned $1:1:2$ resonance. Manifestations of bidromy”, Ann. Physics, 322 (2007), 164–200 | DOI | MR
[30] Symington M., “Four dimensions from two in symplectic topology”, Topology and Geometry of Manifolds (2001, Athens, GA), Proc. Symp. Pure Math., 71, AMS, Providence, RI, 2003, 153–208 ; math.SG/0210033 | MR | Zbl
[31] Winnewisser M., Winnewisser B., Medvedev I., de Lucia F. C., Ross S. C., Bates L. M., “The hidden kernel of molecular quasi-linearity: quantum monodromy”, J. Mol. Structure, 798 (2006), 1–26 | DOI
[32] Vũ Ngọc S., “Quantum monodromy in integrable systems”, Comm. Math. Phys., 203 (1999), 465–479 | DOI | MR | Zbl
[33] Vũ Ngọc S., “Moment polytopes for symplectic manifolds with monodromy”, Adv. Math., 208 (2007), 909–934 ; math.SG/0504165 | DOI | MR | Zbl
[34] Zhilinskii B. I., “Symmetry, invariants, and topology. II. Symmetry, invariants, and topology in molecular models”, Phys. Rep., 341 (2001), 85–171 | DOI | MR | Zbl
[35] Zhilinskii B., “Interpretation of quantum Hamiltonian monodromy in terms of lattice defects”, Acta Appl. Math., 87 (2005), 281–307 | DOI | MR | Zbl
[36] Zhilinskii B., “Hamiltonian monodromy as lattice defect”, Topology in Condensed Matter, ed. M. I. Monastyrsky, Springer, Berlin, 2006, 165–186 ; quant-ph/0303181 | MR | Zbl