A Discretization of the Nonholonomic Chaplygin Sphere Problem
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The celebrated problem of a non-homogeneous sphere rolling over a horizontal plane was proved to be integrable and was reduced to quadratures by Chaplygin. Applying the formalism of variational integrators (discrete Lagrangian systems) with nonholonomic constraints and introducing suitable discrete constraints, we construct a discretization of the $n$-dimensional generalization of the Chaplygin sphere problem, which preserves the same first integrals as the continuous model, except the energy. We then study the discretization of the classical 3-dimensional problem for a class of special initial conditions, when an analog of the energy integral does exist and the corresponding map is given by an addition law on elliptic curves. The existence of the invariant measure in this case is also discussed.
Keywords: nonholonomic systems; discretization; integrability.
@article{SIGMA_2007_3_a43,
     author = {Yuri N. Fedorov},
     title = {A~Discretization of the {Nonholonomic} {Chaplygin} {Sphere} {Problem}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a43/}
}
TY  - JOUR
AU  - Yuri N. Fedorov
TI  - A Discretization of the Nonholonomic Chaplygin Sphere Problem
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a43/
LA  - en
ID  - SIGMA_2007_3_a43
ER  - 
%0 Journal Article
%A Yuri N. Fedorov
%T A Discretization of the Nonholonomic Chaplygin Sphere Problem
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a43/
%G en
%F SIGMA_2007_3_a43
Yuri N. Fedorov. A Discretization of the Nonholonomic Chaplygin Sphere Problem. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a43/

[1] Bobenko A. I., Lorbeer B., Suris Yu., “Integrable discretizations of the Euler top”, J. Math. Phys., 39 (1998), 6668–6683 ; solv-int/9803016 | DOI | MR | Zbl

[2] Dokl. Phys., 47 (2002), 892–894 | DOI | MR

[3] Regul. Chaotic Dyn., 7 (2002), 131–148 | DOI | MR | Zbl

[4] Cortés J., Martínez S., “Nonholonomic integrators”, Nonlinearity, 14 (2001), 1365–1392 | DOI | MR | Zbl

[5] Cortés J., “Energy-conserving nonholonomic integrators”, Discrete Contin. Dyn. Syst., 2003, suppl. (2003), 189–199 ; math.NA/0209314 | MR | Zbl

[6] Duistermaat J., Chaplygin's sphere, math.DS/0409019

[7] Fedorov Yu., “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group $SO(3)$”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 77–94 ; nlin.SI/0505045 | DOI | MR | Zbl

[8] Fedorov Yu., A complete complex solution of the nonholonomic Chaplygin sphere problem, Preprint

[9] Fedorov Yu., Kozlov V., “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 141–171 | MR

[10] Fedorov Yu., Zenkov D., “Discrete nonholonomic LL systems on Lie groups”, Nonlinearity, 18 (2005), 2211–2241 ; math.DS/0409415 | DOI | MR | Zbl

[11] Kilin A., “The dynamics of Chaplygin ball: the qualitative and computer analysis”, Regul. Chaotic Dyn., 6 (2001), 291–306 | DOI | MR | Zbl

[12] Kuznetsov V., Vanhaecke P., “Bäcklund transformation for finite-dimensional integrable systems. A geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; nlin.SI/0004003 | DOI | MR | Zbl

[13] Lawden D., Elliptic functions and applications, Springer-Verlag, 1989 | MR | Zbl

[14] de León M., Martín de Diego D., Santamaría Merino A., “Geometric integrators and nonholonomic mechanics”, J. Math. Phys., 45 (2004), 1042–1062 | DOI | MR

[15] McLachlan R., Perlmutter M., “Integrators for nonholonomic mechanical systems”, J. Nonlinear Sci., 16 (2006), 283–328 | DOI | MR | Zbl

[16] Moser J., Veselov A., “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Comm. Math. Phys., 139 (1991), 217–243 | DOI | MR | Zbl

[17] Pérez-Marc R., “Fixed points and circle maps”, Acta Math., 179 (1997), 243–294 | DOI | MR | Zbl

[18] Schneider D., “Non-holonomic Euler–Poincaré equations and stability in Chaplygin's sphere”, Dyn. Syst., 17 (2002), 87–130 | MR | Zbl

[19] Veselov A., “Integrable discrete-time systems and difference operators”, Funct. Anal. Appl., 22:2 (1988), 83–93 | DOI | MR | Zbl

[20] Whittaker E. T., A treatise on analytical dynamics, 4th ed., Cambridge Univ. Press, Cambridge, 1960 | MR | Zbl