@article{SIGMA_2007_3_a43,
author = {Yuri N. Fedorov},
title = {A~Discretization of the {Nonholonomic} {Chaplygin} {Sphere} {Problem}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a43/}
}
Yuri N. Fedorov. A Discretization of the Nonholonomic Chaplygin Sphere Problem. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a43/
[1] Bobenko A. I., Lorbeer B., Suris Yu., “Integrable discretizations of the Euler top”, J. Math. Phys., 39 (1998), 6668–6683 ; solv-int/9803016 | DOI | MR | Zbl
[2] Dokl. Phys., 47 (2002), 892–894 | DOI | MR
[3] Regul. Chaotic Dyn., 7 (2002), 131–148 | DOI | MR | Zbl
[4] Cortés J., Martínez S., “Nonholonomic integrators”, Nonlinearity, 14 (2001), 1365–1392 | DOI | MR | Zbl
[5] Cortés J., “Energy-conserving nonholonomic integrators”, Discrete Contin. Dyn. Syst., 2003, suppl. (2003), 189–199 ; math.NA/0209314 | MR | Zbl
[6] Duistermaat J., Chaplygin's sphere, math.DS/0409019
[7] Fedorov Yu., “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group $SO(3)$”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 77–94 ; nlin.SI/0505045 | DOI | MR | Zbl
[8] Fedorov Yu., A complete complex solution of the nonholonomic Chaplygin sphere problem, Preprint
[9] Fedorov Yu., Kozlov V., “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 141–171 | MR
[10] Fedorov Yu., Zenkov D., “Discrete nonholonomic LL systems on Lie groups”, Nonlinearity, 18 (2005), 2211–2241 ; math.DS/0409415 | DOI | MR | Zbl
[11] Kilin A., “The dynamics of Chaplygin ball: the qualitative and computer analysis”, Regul. Chaotic Dyn., 6 (2001), 291–306 | DOI | MR | Zbl
[12] Kuznetsov V., Vanhaecke P., “Bäcklund transformation for finite-dimensional integrable systems. A geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; nlin.SI/0004003 | DOI | MR | Zbl
[13] Lawden D., Elliptic functions and applications, Springer-Verlag, 1989 | MR | Zbl
[14] de León M., Martín de Diego D., Santamaría Merino A., “Geometric integrators and nonholonomic mechanics”, J. Math. Phys., 45 (2004), 1042–1062 | DOI | MR
[15] McLachlan R., Perlmutter M., “Integrators for nonholonomic mechanical systems”, J. Nonlinear Sci., 16 (2006), 283–328 | DOI | MR | Zbl
[16] Moser J., Veselov A., “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Comm. Math. Phys., 139 (1991), 217–243 | DOI | MR | Zbl
[17] Pérez-Marc R., “Fixed points and circle maps”, Acta Math., 179 (1997), 243–294 | DOI | MR | Zbl
[18] Schneider D., “Non-holonomic Euler–Poincaré equations and stability in Chaplygin's sphere”, Dyn. Syst., 17 (2002), 87–130 | MR | Zbl
[19] Veselov A., “Integrable discrete-time systems and difference operators”, Funct. Anal. Appl., 22:2 (1988), 83–93 | DOI | MR | Zbl
[20] Whittaker E. T., A treatise on analytical dynamics, 4th ed., Cambridge Univ. Press, Cambridge, 1960 | MR | Zbl