A Journey Between Two Curves
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A typical solution of an integrable system is described in terms of a holomorphic curve and a line bundle over it. The curve provides the action variables while the time evolution is a linear flow on the curve's Jacobian. Even though the system of Nahm equations is closely related to the Hitchin system, the curves appearing in these two cases have very different nature. The former can be described in terms of some classical scattering problem while the latter provides a solution to some Seiberg–Witten gauge theory. This note identifies the setup in which one can formulate the question of relating the two curves.
Keywords: Hitchin system; Nahm equations; monopoles; Seiberg–Witten theory.
@article{SIGMA_2007_3_a42,
     author = {Sergey A. Cherkis},
     title = {A~Journey {Between} {Two} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a42/}
}
TY  - JOUR
AU  - Sergey A. Cherkis
TI  - A Journey Between Two Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a42/
LA  - en
ID  - SIGMA_2007_3_a42
ER  - 
%0 Journal Article
%A Sergey A. Cherkis
%T A Journey Between Two Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a42/
%G en
%F SIGMA_2007_3_a42
Sergey A. Cherkis. A Journey Between Two Curves. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a42/

[1] Nahm W., “A simple formalism for the BPS monopole”, Phys. Lett. B, 90 (1980), 413–414 | DOI

[2] Hitchin N., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[3] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl

[4] Donagi R., Witten E., “Supersymmetric Yang–Mills theory and integrable systems”, Nuclear Phys. B, 460 (1996), 299–334 ; hep-th/9510101 | DOI | MR | Zbl

[5] Kapustin A., Sethi S., “The Higgs branch of impurity theories”, Adv. Theor. Math. Phys., 2 (1998), 571–591 ; hep-th/9804027 | MR | Zbl

[6] Seiberg N., Witten E., Gauge dynamics and compactification to three dimensions, hep-th/9607163 | MR

[7] Klemm A., Lerche W., Mayr P., Vafa C., Warner N. P., “Self-dual strings and $N=2$ supersymmetric field theory”, Nuclear Phys. B, 477 (1996), 746–766 ; hep-th/9604034 | DOI | MR

[8] Witten E., “Solutions of four-dimensional field theories via $M$-theory”, Nuclear Phys. B, 500 (1997), 3–42 ; hep-th/9703166 | DOI | MR | Zbl

[9] Chalmers G., Hanany A., “Three dimensional gauge theories and monopoles”, Nuclear Phys. B, 489 (1997), 223–244 ; hep-th/9608105 | DOI | MR | Zbl

[10] Hanany A., Witten E., “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics”, Nuclear Phys. B, 492 (1997), 152–190 ; hep-th/9611230 | MR

[11] Katz S. H., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195 ; hep-th/9609239 | DOI | MR | Zbl

[12] Hitchin N., Brackets, forms and invariant functionals, math.DG/0508618 | MR

[13] Kapustin A., Witten E., Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 | MR

[14] Hanany A., Tong D., “On monopoles and domain walls”, Comm. Math. Phys., 266 (2006), 647–663 ; hep-th/0507140 | DOI | MR | Zbl

[15] Gerasimov A. A., Shatashvili S. L., Higgs bundles, gauge theories and quantum groups, hep-th/0609024 | MR

[16] Donaldson S. K., Kronheimer P. B., The geomerty of four-manifolds, Oxford University Press, 1990 | MR | Zbl

[17] Jardim M., “A survey on Nahm transform”, J. Geom. Phys., 52 (2004), 313–327 ; math.DG/0309305 | DOI | MR | Zbl

[18] Nahm W., “Self-dual monopoles and calorons”, Group Theoretical Methods in Physics (September 5–10, 1983, Trieste, Italy), Lecture Notes in Phys., 201, Springer, New York, 1984, 189–200 | MR

[19] Nahm W., All selfdual multi-monopoles for arbitrary gauge groups, presented at Int. Summer Inst. on Theoretical Physics, August 31–September 11, 1981, Freiburg, West Germany

[20] Jardim M., “Construction of doubly-periodic instantons”, Comm. Math. Phys., 216 (2001), 1–15 ; math.DG/9909069 | DOI | MR | Zbl

[21] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 19–52 ; Erratum Nuclear Phys. B, 430 (1994), 485–486 ; hep-th/9407087 | DOI | MR | Zbl | DOI | MR | Zbl

[22] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nuclear Phys. B, 431 (1994), 484–550 ; hep-th/9408099 | DOI | MR | Zbl

[23] Atiyah M. F., Hitchin N., The geometry and dynamics of magnetic monopoles, Princeton University Press, 1988 | MR | Zbl

[24] Diaconescu D. E., “D-branes, monopoles and Nahm equations”, Nuclear Phys. B, 503 (1997), 220–238 ; hep-th/9608163 | DOI | MR | Zbl

[25] Cherkis S. A., Kapustin A., “Singular monopoles and supersymmetric gauge theories in three dimensions”, Nuclear Phys. B, 525 (1998), 215–234 ; hep-th/9711145 | DOI | MR | Zbl

[26] Cherkis S. A., Kapustin A., “Singular monopoles and gravitational instantons”, Comm. Math. Phys., 203 (1999), 713–728 ; hep-th/9803160 | DOI | MR | Zbl

[27] Cherkis S. A., Hitchin N. J., “Gravitational instantons of type $D(k)$”, Comm. Math. Phys., 260 (2005), 299–317 ; hep-th/0310084 | DOI | MR | Zbl

[28] Cherkis S. A., Kapustin A., “Periodic monopoles with singularities and $N=2$ super-QCD”, Comm. Math. Phys., 234 (2003), 1–35 ; hep-th/0011081 | DOI | MR | Zbl

[29] Cherkis S. A., Kapustin A., “Nahm transform for periodic monopoles and $N=2$ super Yang–Mills theory”, Comm. Math. Phys., 218 (2001), 333–371 ; hep-th/0006050 | DOI | MR | Zbl

[30] Howe P. S., Lambert N. D., West P. C., “Classical M-fivebrane dynamics and quantum $N=2$ Yang–Mills”, Phys. Lett. B, 418 (1998), 85–90 ; hep-th/9710034 | DOI | MR

[31] Hitchin N. J., “Monopoles and geodesics”, Comm. Math. Phys., 83 (1982), 579–602 | DOI | MR | Zbl

[32] Hitchin N. J., “On the construction of monopoles”, Comm. Math. Phys., 89 (1983), 145–190 | DOI | MR | Zbl

[33] Jardim M., “Nahm transform and spectral curves for doubly-periodic instantons”, Comm. Math. Phys., 225 (2002), 639–668 | DOI | MR | Zbl

[34] Donaldson S. K., “Nahm's equations and the classification of monopoles”, Comm. Math. Phys., 96 (1984), 387–407 | DOI | MR | Zbl

[35] Friedman R., Morgan J., Witten E., “Vector bundles and $F$ theory”, Comm. Math. Phys., 187 (1997), 679–743 ; hep-th/9701162 | DOI | MR | Zbl

[36] Friedman R., Morgan J. W., Witten E., Vector bundles over elliptic fibrations, alg-geom/9709029 | MR

[37] Simpson C. T., “Higgs bundles and local systems”, IHES Publ. Math., 75 (1992), 5–95 ; Simpson C. T., “The Hodge filtration on nonabelian cohomology”, Algebraic Geometry, Part 2 (1995, Santa Cruz), Proc. Symp. Pure Math., 62, Amer. Math. Soc., Providence, 1997, 217–281 ; alg-geom/9604005 | MR | Zbl | MR