@article{SIGMA_2007_3_a42,
author = {Sergey A. Cherkis},
title = {A~Journey {Between} {Two} {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a42/}
}
Sergey A. Cherkis. A Journey Between Two Curves. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a42/
[1] Nahm W., “A simple formalism for the BPS monopole”, Phys. Lett. B, 90 (1980), 413–414 | DOI
[2] Hitchin N., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[3] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl
[4] Donagi R., Witten E., “Supersymmetric Yang–Mills theory and integrable systems”, Nuclear Phys. B, 460 (1996), 299–334 ; hep-th/9510101 | DOI | MR | Zbl
[5] Kapustin A., Sethi S., “The Higgs branch of impurity theories”, Adv. Theor. Math. Phys., 2 (1998), 571–591 ; hep-th/9804027 | MR | Zbl
[6] Seiberg N., Witten E., Gauge dynamics and compactification to three dimensions, hep-th/9607163 | MR
[7] Klemm A., Lerche W., Mayr P., Vafa C., Warner N. P., “Self-dual strings and $N=2$ supersymmetric field theory”, Nuclear Phys. B, 477 (1996), 746–766 ; hep-th/9604034 | DOI | MR
[8] Witten E., “Solutions of four-dimensional field theories via $M$-theory”, Nuclear Phys. B, 500 (1997), 3–42 ; hep-th/9703166 | DOI | MR | Zbl
[9] Chalmers G., Hanany A., “Three dimensional gauge theories and monopoles”, Nuclear Phys. B, 489 (1997), 223–244 ; hep-th/9608105 | DOI | MR | Zbl
[10] Hanany A., Witten E., “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics”, Nuclear Phys. B, 492 (1997), 152–190 ; hep-th/9611230 | MR
[11] Katz S. H., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195 ; hep-th/9609239 | DOI | MR | Zbl
[12] Hitchin N., Brackets, forms and invariant functionals, math.DG/0508618 | MR
[13] Kapustin A., Witten E., Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 | MR
[14] Hanany A., Tong D., “On monopoles and domain walls”, Comm. Math. Phys., 266 (2006), 647–663 ; hep-th/0507140 | DOI | MR | Zbl
[15] Gerasimov A. A., Shatashvili S. L., Higgs bundles, gauge theories and quantum groups, hep-th/0609024 | MR
[16] Donaldson S. K., Kronheimer P. B., The geomerty of four-manifolds, Oxford University Press, 1990 | MR | Zbl
[17] Jardim M., “A survey on Nahm transform”, J. Geom. Phys., 52 (2004), 313–327 ; math.DG/0309305 | DOI | MR | Zbl
[18] Nahm W., “Self-dual monopoles and calorons”, Group Theoretical Methods in Physics (September 5–10, 1983, Trieste, Italy), Lecture Notes in Phys., 201, Springer, New York, 1984, 189–200 | MR
[19] Nahm W., All selfdual multi-monopoles for arbitrary gauge groups, presented at Int. Summer Inst. on Theoretical Physics, August 31–September 11, 1981, Freiburg, West Germany
[20] Jardim M., “Construction of doubly-periodic instantons”, Comm. Math. Phys., 216 (2001), 1–15 ; math.DG/9909069 | DOI | MR | Zbl
[21] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 19–52 ; Erratum Nuclear Phys. B, 430 (1994), 485–486 ; hep-th/9407087 | DOI | MR | Zbl | DOI | MR | Zbl
[22] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nuclear Phys. B, 431 (1994), 484–550 ; hep-th/9408099 | DOI | MR | Zbl
[23] Atiyah M. F., Hitchin N., The geometry and dynamics of magnetic monopoles, Princeton University Press, 1988 | MR | Zbl
[24] Diaconescu D. E., “D-branes, monopoles and Nahm equations”, Nuclear Phys. B, 503 (1997), 220–238 ; hep-th/9608163 | DOI | MR | Zbl
[25] Cherkis S. A., Kapustin A., “Singular monopoles and supersymmetric gauge theories in three dimensions”, Nuclear Phys. B, 525 (1998), 215–234 ; hep-th/9711145 | DOI | MR | Zbl
[26] Cherkis S. A., Kapustin A., “Singular monopoles and gravitational instantons”, Comm. Math. Phys., 203 (1999), 713–728 ; hep-th/9803160 | DOI | MR | Zbl
[27] Cherkis S. A., Hitchin N. J., “Gravitational instantons of type $D(k)$”, Comm. Math. Phys., 260 (2005), 299–317 ; hep-th/0310084 | DOI | MR | Zbl
[28] Cherkis S. A., Kapustin A., “Periodic monopoles with singularities and $N=2$ super-QCD”, Comm. Math. Phys., 234 (2003), 1–35 ; hep-th/0011081 | DOI | MR | Zbl
[29] Cherkis S. A., Kapustin A., “Nahm transform for periodic monopoles and $N=2$ super Yang–Mills theory”, Comm. Math. Phys., 218 (2001), 333–371 ; hep-th/0006050 | DOI | MR | Zbl
[30] Howe P. S., Lambert N. D., West P. C., “Classical M-fivebrane dynamics and quantum $N=2$ Yang–Mills”, Phys. Lett. B, 418 (1998), 85–90 ; hep-th/9710034 | DOI | MR
[31] Hitchin N. J., “Monopoles and geodesics”, Comm. Math. Phys., 83 (1982), 579–602 | DOI | MR | Zbl
[32] Hitchin N. J., “On the construction of monopoles”, Comm. Math. Phys., 89 (1983), 145–190 | DOI | MR | Zbl
[33] Jardim M., “Nahm transform and spectral curves for doubly-periodic instantons”, Comm. Math. Phys., 225 (2002), 639–668 | DOI | MR | Zbl
[34] Donaldson S. K., “Nahm's equations and the classification of monopoles”, Comm. Math. Phys., 96 (1984), 387–407 | DOI | MR | Zbl
[35] Friedman R., Morgan J., Witten E., “Vector bundles and $F$ theory”, Comm. Math. Phys., 187 (1997), 679–743 ; hep-th/9701162 | DOI | MR | Zbl
[36] Friedman R., Morgan J. W., Witten E., Vector bundles over elliptic fibrations, alg-geom/9709029 | MR
[37] Simpson C. T., “Higgs bundles and local systems”, IHES Publ. Math., 75 (1992), 5–95 ; Simpson C. T., “The Hodge filtration on nonabelian cohomology”, Algebraic Geometry, Part 2 (1995, Santa Cruz), Proc. Symp. Pure Math., 62, Amer. Math. Soc., Providence, 1997, 217–281 ; alg-geom/9604005 | MR | Zbl | MR