@article{SIGMA_2007_3_a41,
author = {Kanehisa Takasaki},
title = {Hamiltonian {Structure} of {PI} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a41/}
}
Kanehisa Takasaki. Hamiltonian Structure of PI Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a41/
[1] Brezin E., Kazakov V. A., “Exactly solvable field theories of closed strings”, Phys. Lett. B, 236 (1990), 144–150 | DOI | MR
[2] Douglas M. R., Shenker S. H., “Strings in less than one-dimension”, Nucl. Phys. B, 335 (1990), 635–654 | DOI | MR
[3] Gross D. J., Migdal A. A., “Nonperturbative two-dimensional quantum gravity”, Phys. Rev. Lett., 64 (1990), 127–130 | DOI | MR | Zbl
[4] Douglas M., “Strings in less than one-dimension and the generalized K-dV hierarchies”, Phys. Lett. B, 238 (1990), 176–180 | DOI | MR
[5] Moore G., “Geometry of the string equations”, Comm. Math. Phys., 133 (1990), 261–304 | DOI | MR | Zbl
[6] Fukuma M., Kawai H., Nakayama R., “Infinite dimensional Grassmannian structure of two dimensional string theory”, Comm. Math. Phys., 143 (1991), 371–403 | DOI | MR
[7] Kac V., Schwarz A., “Geometric interpretation of partition function of 2D gravity”, Phys. Lett. B, 257 (1991), 329–334 | DOI | MR
[8] Schwarz A., “On some mathematical problems of 2D-gravity and $W_h$-gravity”, Modern Phys. Lett. A, 6 (1991), 611–616 ; Schwarz A., “On solutions to the string equations”, Modern Phys. Lett. A, 6 (1991), 2713–2726 ; hep-th/9109015 | DOI | MR | Zbl | DOI | MR
[9] Adler M., van Moerbeke P., “A matrix integral solution to two-dimensional $W_p$-gravity”, Comm. Math. Phys., 147 (1992), 25–56 | DOI | MR | Zbl
[10] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 118 (1928), 557–583 ; Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 134 (1931), 471–485. ; Proc. London Math. Soc., 21 (1992), 420–440 | DOI | Zbl | DOI | DOI
[11] Dubrovin B. A., Matveev V. B., Novikov S. P., “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl
[12] Krichever I. M., “Methods of algebraic geometry in the theory of nonlinear equations”, Russian Math. Surveys, 32:6 (1977), 185–214 | DOI | MR
[13] Sato M., Sato Y., “Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold”, Nonlinear Partial Differential Equations in Applied Science (1982, Tokyo), North-Holland Math. Stud., 81, eds. H. Fujita, P. D. Lax and G. Strang, 1983, 259–271 | MR | Zbl
[14] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory, eds. M. Jimbo and T. Miwa, World Scientific, Singapore, 1983, 39–119 | MR
[15] Segala G. B., Wilson G., “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Études Sci., 61 (1985), 5–65 | DOI | MR
[16] Orlov A. Yu., Schulman E. I., “Additional symmetries for integrable equations and conformal algebra representation”, Lett. Math. Phys., 12 (1986), 171–179 | DOI | MR | Zbl
[17] Mumford D., Tata lectures on theta, II, Birkhäuser, Boston, 1984 | MR | Zbl
[18] Beauville A., “Jacobiennes des courbes spectrale et systémes hamiltoniens complètement intégrables”, Acta Math., 164 (1990), 211–235 | DOI | MR | Zbl
[19] Nakayashiki A., Smirnov F. A., “Cohomologies of affine Jacobi varieties and integrable systems”, Comm. Math. Phys., 217 (2001), 623–652 ; math-ph/0001017 | DOI | MR | Zbl
[20] Eilbeck J. C., Enol'skii V. Z., Kuznetsov V. B., Tsiganov A. V., “Linear $r$-matrix algebra for classical separable systems”, J. Phys. A: Math. Gen., 27 (1994), 567–578 ; hep-th/9306155 | DOI | MR | Zbl
[21] Magnano G., Magri F., “Poisson–Nijenhuis structures and Sato hierarchy”, Rev. Math. Phys., 3 (1991), 403–466 | DOI | MR | Zbl
[22] Falqui G., Magri F., Pedroni M., Zubelli J. P., “A bi-Hamiltonian theory of stationary KdV flows and their separability”, Regul. Chaotic Dyn., 5 (2000), 33–51 ; nlin.SI/0003020 | DOI | MR
[23] Jimbo M., Miwa T., Môri Y., Sato M., “Density matrix of an impenetrable Bose gas and the fifth Painlevé equations”, Phys. D, 1 (1980), 80–158 | DOI | MR
[24] Flaschka H., McLaughlin D. W., “Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions”, Progr. Theoret. Phys., 55 (1976), 438–456 | DOI | MR | Zbl
[25] Novikov S. P., Veselov A. P., “Poisson brackets and complex tori”, Algebraic geometry and its applications, Tr. Mat. Inst. Steklova, 165, 1984, 49–61 | MR | Zbl
[26] Adams M. R., Harnad J., Hurtubise J., “Darboux coordinates and Liouville–Arnold integration in loop algebras”, Comm. Math. Phys., 155 (1993), 385–413 ; hep-th/9210089 | DOI | MR | Zbl
[27] Sklyanin E. K., “Separation of variables. New trends”, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60 ; solv-int/9504001 | DOI | MR | Zbl
[28] Harnad J., “Dual isomonodromic deformations and moment maps to loop algebras”, Comm. Math. Phys., 166 (1994), 337–365 ; hep-th/9301076 | DOI | MR | Zbl
[29] Harnad J., Wisse M. A., “Loop algebra moment maps and Hamiltonian models for the Painlevé transcendents”, Fields Inst. Commun., 7 (1996), 155–169 ; hep-th/9305027 | MR | Zbl
[30] Takasaki K., “Spectral curve, Darboux coordinates and Hamiltonian structure of periodic dressing chains”, Comm. Math. Phys., 241 (2003), 111–142 ; nlin.SI/0206049 | MR | Zbl
[31] Dubrovin B., Mazzocco M., “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271:2 (2007), 289–373 ; math.DG/0311261 | DOI | MR | Zbl
[32] Okamoto K., “Isomonodromic deformations and Painlevé equations, and the Garnier system”, J. Math. Sci. Univ. Tokyo, 33 (1986), 575–618 | MR | Zbl
[33] Kimura H., “The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure”, Ann. Mat. Pura Appl., 155 (1989), 25–74 | DOI | MR | Zbl
[34] Shimomura S. “Painlevé property of a degenerate Garnier system of $(9/2)$-type and of a certain fourth order non-linear ordinary differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 1–17 | MR
[35] Gelfand I. M., Dikii L. A., “Asymptotic behavior of the resolvent of Sturm–Liouville equations and the algebra of the Korteweg–de Vries equations”, Russian Math. Surveys, 30:5 (1975), 77–113 ; Gelfand I. M., Dikii L. A., “Fractional powers of operators and Hamiltonian systems”, Funct. Anal. Appl., 10:4 (1976), 259–273 ; Gelfand I. M., Dikii L. A., “The resolvent and Hamiltonian systems”, Funct. Anal. Appl., 11:2 (1977), 93–105 | DOI | MR | DOI | MR | DOI | MR
[36] Manin Yu. I., “Algebraic aspects of non-linear differential equations”, J. Soviet Math., 11 (1979), 1–122 | DOI | Zbl
[37] Adler M., “On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–de Vries equations”, Invent. Math., 50 (1979), 219–248 | DOI | MR | Zbl
[38] Wilson G., “Commuting flows and conservation laws”, Math. Proc. Cambridge Philos. Soc., 86 (1979), 131–143 | DOI | MR | Zbl
[39] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations adn ordinary differential equations of of $P$-type”, J. Math. Phys., 21 (1980), 1006–1015 | DOI | MR | Zbl
[40] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations, I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[41] Mazzocco M., Mo M.-Y., The Hamiltonian structure of the second Painlevé hierarchy, nlin.SI/0610066