@article{SIGMA_2007_3_a40,
author = {S. Torkel Glad and Daniel Petersson and Stefan Rauch-Wojciechowski},
title = {Phase {Space} of {Rolling} {Solutions} of the {Tippe} {Top}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a40/}
}
TY - JOUR AU - S. Torkel Glad AU - Daniel Petersson AU - Stefan Rauch-Wojciechowski TI - Phase Space of Rolling Solutions of the Tippe Top JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a40/ LA - en ID - SIGMA_2007_3_a40 ER -
S. Torkel Glad; Daniel Petersson; Stefan Rauch-Wojciechowski. Phase Space of Rolling Solutions of the Tippe Top. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a40/
[1] Bou-Rabee N. M., Marsden J. E., Romero L. A., “Tippe top inversion as a dissipation-induced instability”, SIAM J. Appl. Dyn. Syst., 3 (2004), 352–377 | DOI | MR | Zbl
[2] Chaplygin S. A., “On motion of heavy rigid body of revolution on horizontal plane”, Proc. of the Physical Sciences, Section of the Society of Amateurs of Natural Sciences, 9:1 (1897), 10–16
[3] Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7 (2002), 131–148 | DOI | MR | Zbl
[4] Cohen R. J., “The tippe top revisited”, Amer. J. Phys., 45 (1977), 12–17 | DOI
[5] Ebenfeld S., Scheck F., “A new analysis of the tippe top: asymptotic states and Liapunov stability”, Ann. Physics, 243 (1995), 195–217 ; chao-dyn/9501008 | DOI | MR | Zbl
[6] Gray C. G., Nickel B. G., “Constants of motion for nonslipping tippe tops and other tops with rounded pegs”, Amer. J. Phys., 68 (1999), 821–828 | DOI
[7] Karapetyan A. V., “Qualitative investigation of the dynamics of a top on a plane with friction”, J. Appl. Math. Mech., 55 (1991), 563–565 | DOI | MR | Zbl
[8] Karapetyan A. V., “On the specific character of the application of Routh's theory to systems with differential constraints”, J. Appl. Math. Mech., 58 (1994), 387–392 | DOI | MR | Zbl
[9] Kuleshov A. S., “On the generalized Chaplygin integral”, Regul. Chaotic Dyn., 6 (2001), 227–232 | DOI | MR | Zbl
[10] Landau L. D., Lifshitz E. M., Mechanics, Pergamon Press Ltd, Oxford, 1976 | MR
[11] Moshchuk N. K., “Qualitative analysis of the motion of a rigid body of revolution on an absolutely rough plane”, J. Appl. Math. Mech., 52 (1988), 159–165 | DOI | MR | Zbl
[12] Rauch-Wojciechowski S., Sköldstam M., Glad T., “Mathematical analysis of the tippe top”, Regul. Chaotic Dyn., 10 (2005), 333–362 | DOI | MR | Zbl
[13] Routh E. J., The advanced part of a treatise on the dynamics of a system of rigid bodies, Dover Publications, New York, 1905, 131–165
[14] Zobova A. A., Karapetyan A. V., “Construction of Poincaré–Chetaev and Smale bifurcation diagrams for conservative nonholonomic systems with symmetry”, J. Appl. Math. Mech., 69 (2005), 183–194 | DOI | MR | Zbl