@article{SIGMA_2007_3_a4,
author = {Alexander V. Shapovalov and Roman O. Rezaev and Andrey Yu. Trifonov},
title = {Symmetry {Operators} for the {Fokker{\textendash}Plank{\textendash}Kolmogorov} {Equation} with {Nonlocal} {Quadratic} {Nonlinearity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a4/}
}
TY - JOUR AU - Alexander V. Shapovalov AU - Roman O. Rezaev AU - Andrey Yu. Trifonov TI - Symmetry Operators for the Fokker–Plank–Kolmogorov Equation with Nonlocal Quadratic Nonlinearity JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a4/ LA - en ID - SIGMA_2007_3_a4 ER -
%0 Journal Article %A Alexander V. Shapovalov %A Roman O. Rezaev %A Andrey Yu. Trifonov %T Symmetry Operators for the Fokker–Plank–Kolmogorov Equation with Nonlocal Quadratic Nonlinearity %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a4/ %G en %F SIGMA_2007_3_a4
Alexander V. Shapovalov; Roman O. Rezaev; Andrey Yu. Trifonov. Symmetry Operators for the Fokker–Plank–Kolmogorov Equation with Nonlocal Quadratic Nonlinearity. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a4/
[1] Miller W., Jr., Symmetry and separation of variables, Addison-Wesley, London – Amsterdam – Ontario – Tokio – New York, 1977 | MR | Zbl
[2] Malkin M. A., Manko V. I., Dynamic symmetries and coherent states of quantum systems, Nauka, Moscow, 1979 (in Russian)
[3] Academic Press, New York, 1982 | MR
[4] Anderson R. L., Ibragimov N. H., Lie–Bäcklund transformations in applications, SIAM, Philadelphia, 1979 | MR
[5] Olver P. J., Application of Lie groups to differential equations, Springer, New York, 1986 | MR
[6] Fushchych W. I., Shtelen W. M., Serov N. I., Symmetry analysis and exact solutions of equations of nonlinear mathematical physics, Kluwer, Dordrecht, 1993 | Zbl
[7] Fushchych W. I., Nikitin A. G., Symmetries of equations of quantum mechanics, Allerton Press Inc., New York, 1994 | MR
[8] Krasilshchik I. S., Lychagin V. V., Vinogradov A. M., Geometry of jet spaces and nonlinear partial differential equations, Advanced Studies in Contemporary Mathematics, 1, Gordon and Breach Science Publishers, New York, 1986 | MR
[9] Gaeta G., Nonlinear symmetries and nonlinear equations, Mathematics and its Applications, 299, Kluwer Academic Publishers Group, Dordrecht, 1994 | MR | Zbl
[10] Frank T. D., Nonlinear Fokker–Planck equations, Springer, Berlin, 2004 | MR
[11] Bellucci S., Trifonov A. Yu., “Semiclassically-concentrated solutions for the one-dimensional Fokker–Planck equation with a nonlocal nonlinearity”, J. Phys. A: Math. Gen., 38 (2005), L103–L114 | DOI | MR | Zbl
[12] Maslov V. P., The complex WKB method for nonlinear equations. I. Linear theory, Birkhäuser Verlag, Basel – Boston – Berlin, 1994 | MR | Zbl
[13] Theoret. and Math. Phys., 92:2 (1992), 843–868 | DOI | MR
[14] Math. Notes, 54 (1993), 1010–1025 | DOI | MR | Zbl
[15] Albeverio S., Dobrokhotov S. Yu., Poteryakhin M., “On quasimodes of small diffusion operators corresponding to stable invariant tori with nonregular neighborhoods”, Asymptot. Anal., 43:3 (2005), 171–203 | MR | Zbl
[16] Maslov V. P., “Global exponential asymptotic behavior of the solutions of tunnel-type equations and the problem of large deviations”, Trudy Mat. Inst. Steklov., 193, 1984, 150–180 | MR
[17] Belov V. V., Shapovalov A. V., Trifonov A. Yu., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. Math. Math. Sci., 32 (2002), 325–370 ; math-ph/0012046 | DOI | MR | Zbl
[18] Theoret. and Math. Phys., 130:3 (2002), 391–418 | DOI | MR | Zbl
[19] Lisok A. L., Trifonov A. Yu., Shapovalov A. V., “The evolution operator of the Hartree-type equation with a quadratic potential”, J. Phys. A: Math. Gen., 37 (2004), 4535–4556 ; math-ph/0312004 | DOI | MR | Zbl
[20] Shapovalov A. V., Trifonov A. Yu., Lisok A. L., “Exact solutions and symmetry operators for the nonlocal Gross–Pitaevskii equation with quadratic potential”, SIGMA, 1 (2005), 007, 14 pp., ages ; math-ph/0511010 | MR | Zbl
[21] Shvedov O. Yu., “Semiclasical symmetries”, Ann. Phys., 296 (2002), 51–89 | DOI | MR | Zbl
[22] Russian Phys. J., 45 (2002), 118–128 | DOI | MR | Zbl
[23] Russian Phys. J., 48 (2005), 592–604 | DOI | MR | Zbl
[24] Shiino M., Yoshida K., “Chaos-nonchaos phase transitions induced by external noise in ensembles of nonlinearly coupled oscillators”, Phys. Rev. E, 63 (2001), 026210, 6 pp., ages | DOI
[25] Shiino M., “Stability analysis of mean-field-type nonlinear Fokker–Planck equations associated with a generalized entropy and its application to the self-gravitating system”, Phys. Rev. E, 67 (2003), 056118, 5 pp., ages | DOI
[26] Drozdov A. N., Morillo M., “Validity of basic concepts in nonlinear cooperative Fokker–Plank models”, Phys. Rev. E, 54 (1996), 3304–3313 | DOI | MR
[27] Schuller F. P., Vogt P., “Product structure of heat phase space and branching Brownian motion”, Ann. Phys., 308 (2003), 528–554 ; math-ph/0209016 | DOI | MR | Zbl
[28] Frank T. D., “Classical Langevin equations for the free electron gas and blackbody radiation”, J. Phys. A: Math. Gen., 37 (2004), 3561–3567 | DOI | MR | Zbl
[29] Soviet Phys. Uspekhi, 139 (1983), 311–327 | DOI | MR
[30] Popov M. M., “Green functions for the Schrödinger equation with a quadric potential”, Problems of Mathematical Physics, Vol. 6, Izdat. Leningrad. Univ., Leningrad, 1973, 119–125 (in Russian)
[31] Dodonov V. V., Malkin I. A., Man'ko V. I., “Integrals of motion, Green functions and coherent states of dynamic systems”, Internat. J. Theoret. Phys., 14 (1975), 37–54 | DOI | MR
[32] Sov. Math. Dokl., 34 (1987), 555–558 | MR
[33] Lahno V. I., Spichak S. V., Stogniy V. I., Symmetry analysis of evolution type equations, Computer Research Institute, Moscow – Igevsk, 2004 (in Russian)