$q$-Boson in Quantum Integrable Systems
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

$q$-bosonic realization of the underlying Yang–Baxter algebra is identified for a series of quantum integrable systems, including some new models like two-mode $q$-bosonic model leading to a coupled two-component derivative NLS model, wide range of $q$-deformed matter-radiation models, $q$-anyon model etc. Result on a new exactly solvable interacting anyon gas, linked to $q$-anyons on the lattice is reported.
Keywords: quantum integrable systems; Yang–Baxter algebra; quantum group, $q$-bosonic integrable models; $q$-deformed matter-radiation models; $q$-anyon; derivative-$\delta$-function anyon gas.
@article{SIGMA_2007_3_a39,
     author = {Anjan Kundu},
     title = {$q${-Boson} in {Quantum} {Integrable} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a39/}
}
TY  - JOUR
AU  - Anjan Kundu
TI  - $q$-Boson in Quantum Integrable Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a39/
LA  - en
ID  - SIGMA_2007_3_a39
ER  - 
%0 Journal Article
%A Anjan Kundu
%T $q$-Boson in Quantum Integrable Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a39/
%G en
%F SIGMA_2007_3_a39
Anjan Kundu. $q$-Boson in Quantum Integrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a39/

[1] Drinfel'd V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Dokl. Akad. Nauk SSSR, 283 (1985), 1060–1064 | MR

[2] Drinfel'd V. G., “Quantum group”, Proc. Int. Cong. Mathematicians, 1, Berkeley, 1986, 798–820

[3] Faddeev L. D., “Algebraic aspects of Bethe ansatz”, Internat. J. Modern Phys. A, 10 (1995), 1845–1878 ; hep-th/9404013 | DOI | MR | Zbl

[4] MacFarlane A. J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $\mathrm{SU}(2)_q$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl

[5] Biedenharn L. C., “The quantum group $\mathrm{SU}_q(2)$ and a $q$-analogue of the boson operators”, J. Phys. A: Math. Gen., 22 (1989), L873–L878 | DOI | MR | Zbl

[6] Sun C. P., Fu H. C., “The $q$-deformed boson realisation of the quantum group $\mathrm{SU}(n)_q$ and its representations”, J. Phys. A: Math. Gen., 22 (1989), L983–L986 | DOI | MR | Zbl

[7] Chaichian M., Ellinas D., Kulish P., “Quantum algebra as the dynamical symmetry of the deformed Jaynes–Cummings model”, Phys. Rev. Lett., 65 (1990), 980–983 | DOI | MR | Zbl

[8] Chang Z., “Generalized Jaynes–Cummings model with an intensity-dependent coupling interacting with a quantum group-theoretic coherent state”, Phys. Rev. A, 47 (1993), 5017–5023 | DOI

[9] Basu-Mallick B., Kundu A., “Single $q$-oscillator mode realisation of the quantum group through canonical bosonisation of $SU(2)$ and $q$-oscillators”, Modern Phys. Lett. A, 6 (1991), 701–705 | DOI | MR | Zbl

[10] Bogoliubov N. M., Bullough R. K., “A $q$-deformed completely integrable bose gas model”, J. Phys. A: Math. Gen., 25 (1992), 4057–4071 | DOI | MR | Zbl

[11] Bonatsos D., Raychev P. P., Roussev R. P., Smirnov Yu. F., “Description of rotational molecular spectra by the quantum algebra $\mathrm{SU}_q(2)$”, Chem. Phys. Lett., 175 (1990), 300–306 | DOI

[12] Raychev P. P., Roussev R. P., Smirnov Yu. F., “The quantum algebra $\mathrm{SU}_q(2)$ and rotational spectra of deformed nuclei”, J. Phys. G, 16 (1990), L137–L142 | DOI | MR

[13] Chang Z., Yan H., “Quantum group theoretic approach to vibrating and rotating diatomic molecules”, Phys. Lett. A, 158 (1991), 242–246 | DOI | MR

[14] Kundu A., Ng J., “Deformation of angular momentum and its application to the spectra of triatomic molecules”, Phys. Lett. A, 197 (1995), 221–226 | DOI | MR | Zbl

[15] Ghosh A., Mitra P., Kundu A., “Multidimensional isotropic and anisotropic $q$-oscillator models”, J. Phys. A: Math. Gen., 29 (1996), 115–124 | DOI | MR | Zbl

[16] Kundu A., Basu-Mallick B., “Construction of integrable quantum lattice models through Sklyanin like algebras”, Modern Phys. Lett. A, 7 (1992), 61–69 | DOI | MR | Zbl

[17] Kundu A., “Algebraic approach in unifying quantum integrable models”, Phys. Rev. Lett., 82 (1999), 3936–3939 ; hep-th/9810220 | DOI | MR | Zbl

[18] Kundu A., “Unifying approaches in integrable systems: quantum and statistical, ultralocal and non-ultralocal”, Classical Quantum Integrable Systems, IOP, Bristol, 2003, 147–181; hep-th/0303263

[19] Izergin A. G., Korepin V. E., “Lattice versions of quantum field theory models in two dimensions”, Nuclear Phys. B, 205 (1982), 401–413 | DOI | MR

[20] Kundu A., Basu-Mallick B., “Classical and quantum integrability of a novel derivative NLS model related to quantum group structures”, J. Math. Phys., 34 (1993), 1052–1062 | DOI | MR | Zbl

[21] Cheng Z., Chen S. X., “Thermodynamics of a deformed Bose gas”, J. Phys. A: Math. Gen., 35 (2002), 9731–9749 ; cond-mat/0205208 | DOI | MR

[22] Basu-Mallick B., Kundu A., “Hidden quantum group structure in a relativistic quantum integrable model”, Phys. Lett. B, 287 (1992), 149–153 | DOI | MR

[23] Kulish P., Sklyanin E. K., “Quantum spectral transform method. Recent development”, Integrable Quantum Field Theories, Lect. Notes in Phys., 151, ed. J. Hietarinta, Springer, Berlin, 1982, 61–119 | MR

[24] Ablowitz M., “Lectures on the inverse scattering transform”, Studies in Appl. Math., 58 (1978), 17–94 | MR | Zbl

[25] Bullough R. K., Bogoliubov N. M., Pang G. D., Timonen J., “Quantum repulsive Schrödinger equations and their superfluidity”, Solitons in Science Engineering: Theory Applications, Special Issue, Chaos Solitons Fractals, 5, ed. M. Lakshmanan, 1995, 2639–2656 | MR | Zbl

[26] Jaynes E. T., Cummings F. W., “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51 (1963), 89–109 | DOI

[27] Buck B., Sukumar C. V., “Exactly soluble model of atom-phonon coupling showing periodic decay and revival”, Phys. Lett. A, 81 (1981), 132–135 | DOI

[28] Blockley C. A., Walls D. F., Risken H., “Quantum collapes and revivals in a quantized”, Eur. Phys. Lett., 17 (1992), 509–514 | DOI

[29] Buzek V., “The Jaynes–Cummings model with a $q$ analogue of a coherent state”, J. Modern Opt., 39 (1992), 949–959 | DOI | MR | Zbl

[30] Chang Z., “Dynamics of generalized photonic fields interacting with atoms”, Phys. Rev. A, 46 (1992), 5865–5873 | DOI | MR

[31] Bogoliubov N. M., Rybin A. V., Timonen J., “An algebraic $q$-deformed model for bosons interacting with spin impurities”, J. Phys. A: Math. Gen., 27 (1994), L363–L367 | DOI | MR | Zbl

[32] Bogoliubov N. M., Rybin A. V., Bullough R. K., Timonen J., “The Maxwell–Bloch system on a lattice”, Phys. Rev. A, 52 (1995), 1487–1493 | DOI

[33] Vogel W., de Mitos Filho R., “Nonlinear Jaynes–Cummings dynamics of a trapped ion”, Phys. Rev. A, 52 (1995), 4214–4217 | DOI

[34] Zheng H. S., Kuang L. M., Gao K. L., Jaynes–Cummings model dynamics in two trapped ions, quant-ph/0106020

[35] Chang Z., “Minimum-uncertainty states, a two-photon system, and quantum-group symmetry”, Phys. Rev. A, 46 (1992), 5860–5864 | DOI | MR

[36] Chang Z., “Quantum group and quantum symmetry”, Phys. Rep., 262 (1995), 137–225 | DOI | MR

[37] Bogoliubov N. M., Izergin A. G., Kitane N. A., “Correlation function for a strongly correlated boson system”, Nuclear Phys. B, 516 (1998), 501–528 ; solv-int/9710002 | DOI | MR | Zbl

[38] Kundu A., “Quantum integrability and Bethe ansatz solution for interacting matter-radiation systems”, J. Phys. A: Math. Gen., 37 (2004), L281–L287 ; quant-ph/0307102 | DOI | MR | Zbl

[39] Kundu A., “Exact solution of double $\delta$ function Bose gas through an interacting anyon gas”, Phys. Rev. Lett., 83 (1999), 1275–1278 ; hep-th/9811247 | DOI | MR | Zbl

[40] Batchelor M. T., Guan X. W., Oelkers N., “1D interacting anyon gas: low energy properties and Haldane exclusion statistics”, Phys. Rev. Lett., 96 (2006), 210402, 4 pp., ages ; cond-mat/0603643 | DOI

[41] Kundu A., “Generation of a quantum integrable class of discrete-time or relativistic periodic Toda chain”, Phys. Lett. A, 190 (1994), 79–84 ; hep-th/9403001 | DOI | MR | Zbl

[42] Kuznetsov V. B., Tsiganov A. V., Separation of variables for the quantum relativistic Toda lattice, hep-th/9402111

[43] Faddeev L. D., “Quantum completely integrable models in field theory”, Sov. Sci. Rev. Math. Phys. C, 1 (1980), 107–155 | MR | Zbl

[44] Takhtajan L., “Introduction to algebraic Bethe ansatz”, Exactly Solvable Problems in Condensed Matter and Relativistic Field Theory, eds. B. S. Shatry, S. S. Jha and V. Singh, Springer Verlag, 1985, 175–219 | MR

[45] Shnirman A. G., Malomed B. A., Ben-Jacob E., “Nonpertubative studies of a quantum higher order nonlinear Schrödinger model”, Phys. Rev. A, 50 (1994), 3453–3463 | DOI