$N$-Wave Equations with Orthogonal Algebras: $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ Reductions and Soliton Solutions
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider $N$-wave type equations related to the orthogonal algebras obtained from the generic ones via additional reductions. The first $\mathbb Z_2$-reduction is the canonical one. We impose a second $\mathbb Z_2$-reduction and consider also the combined action of both reductions. For all three types of $N$-wave equations we construct the soliton solutions by appropriately modifying the Zakharov–Shabat dressing method. We also briefly discuss the different types of one-soliton solutions. Especially rich are the types of one-soliton solutions in the case when both reductions are applied. This is due to the fact that we have two diferent configurations of eigenvalues for the Lax operator $L$: doublets, which consist of pairs of purely imaginary eigenvalues, and quadruplets. Such situation is analogous to the one encountered in the sine-Gordon case, which allows two types of solitons: kinks and breathers. A new physical system, describing Stokes-anti Stokes Raman scattering is obtained. It is represented by a $4$-wave equation related to the $\mathbf B_2$ algebra with a canonical $\mathbb Z_2$ reduction.
Keywords: solitons; Hamiltonian systems.
@article{SIGMA_2007_3_a38,
     author = {Vladimir S. Gerdjikov and Nikolay A. Kostov and Tihomir I. Valchev},
     title = {$N${-Wave} {Equations} with {Orthogonal} {Algebras:} $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ {Reductions} and {Soliton} {Solutions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a38/}
}
TY  - JOUR
AU  - Vladimir S. Gerdjikov
AU  - Nikolay A. Kostov
AU  - Tihomir I. Valchev
TI  - $N$-Wave Equations with Orthogonal Algebras: $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ Reductions and Soliton Solutions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a38/
LA  - en
ID  - SIGMA_2007_3_a38
ER  - 
%0 Journal Article
%A Vladimir S. Gerdjikov
%A Nikolay A. Kostov
%A Tihomir I. Valchev
%T $N$-Wave Equations with Orthogonal Algebras: $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ Reductions and Soliton Solutions
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a38/
%G en
%F SIGMA_2007_3_a38
Vladimir S. Gerdjikov; Nikolay A. Kostov; Tihomir I. Valchev. $N$-Wave Equations with Orthogonal Algebras: $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ Reductions and Soliton Solutions. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a38/

[1] Ackerhalt J. R., Milonni P. W., “Solitons and four-wave mixing”, Phys. Rev. A, 33 (1986), 3185–3198 | DOI

[2] Armstrong J., Bloembergen N., Ducuing J., Persham P., “Interactions between light waves in a nonlinear dielectric”, Phys. Rev., 127 (1962), 1918–1939 | DOI

[3] Degasperis A., Lombardo S., “Multicomponent integrable wave equations: I. Darboux-dressing transformation”, J. Phys. A: Math. Theor., 40 (2007), 961–977 ; nlin.SI/0610061 | DOI | MR | Zbl

[4] Ferapontov E., “Isoparametric hypersurfaces in spheres, integrable nondiagonalizable systems of hydrodynamic type and $N$-wave systems”, Differential Geom. Appl., 5 (1995), 335–369 | DOI | MR | Zbl

[5] Gerdjikov V., “On the spectral theory of the integro-differential operator $\Lambda$, generating nonlinear evolution equations”, Lett. Math. Phys., 6 (1982), 315–324 | DOI | MR

[6] Gerdjikov V., “Generalised Fourier transforms for the soliton equations. Gauge covariant formulation”, Inverse Problems, 2 (1986), 51–74 | DOI | MR | Zbl

[7] Gerdjikov V., “Algebraic and analytic aspects of soliton type equations”, Contemp. Math., 301 (2002), 35–67 ; nlin.SI/0206014 | MR

[8] Gerdjikov V., Grahovski G., Ivanov R., Kostov N., “$N$-wave interactions related to simple Lie algebras. $\mathbb Z_2$-reductions and soliton solutions”, Inverse Problems, 17 (2001), 999–1015 ; nlin.SI/0009034 | DOI | MR | Zbl

[9] Gerdjikov V., Grahovski G., Kostov N., “Reductions of $N$-wave interactions related to low-rank simple Lie algebras”, J. Phys. A: Math. Gen., 34 (2001), 9425–9461 ; nlin.SI/0006001 | DOI | MR | Zbl

[10] Gerdjikov V., Kaup D., “How many types of soliton solutions do we know?”, Proceedings of Seventh International Conference on Geometry, Integrability and Quantization (June 2–10, 2005, Varna, Bulgaria), eds. I. Mladenov and M. de Leon, Softex, Sofia, 2006, 11–34 | MR | Zbl

[11] Gerdjikov V., Kostov N., “Inverse scattering transform analysis of Stokes-anti Stokes stimulated Raman scattering”, Phys. Rev. A, 54 (1996), 4339–4350 ; patt-sol/9502001 | DOI | MR

[12] Gerdjikov V., Valchev T., “Breather solutions of $N$-wave equations”, Proceedings of Eighth International Conference on Geometry, Integrability and Quantization (June 9–14, 2006, Varna, Bulgaria), eds. I. Mladenov and M. de Leon, Softex, Sofia, 2007, 184–200 | MR | Zbl

[13] Goto M., Grosshans F., Semisimple Lie algebras, Marcel Dekker, New York, 1978 | MR | Zbl

[14] Ivanov R., “On the dressing method for the generalised Zakharov–Shabat system”, Nuclear Phys. B, 694 (2004), 509–524 ; math-ph/0402031 | DOI | MR | Zbl

[15] Matveev V., Salle M., Darboux transformations and solitons, Springer Verlag, Berlin, 1991 | MR

[16] Mikhailov A., “The Reduction problem and the inverse scattering method”, Phys. D, 3 (1981), 73–117 | DOI

[17] Rogers C., Schief W. K., Bäcklund and Darboux transformations, Cambridge University Press, London, 2002 | MR

[18] Rogers C., Shadwick W., Bäcklund transformations and their applications, Academic Press, New York, 1982 | MR

[19] Shabat A., “The inverse scattering problem for a system of differential equations”, Funktsional. Anal. i Prilozhen, 9:3 (1975), 75–78 (in Russian) | MR | Zbl

[20] Shabat A., “The inverse scattering problem”, Differ. Uravn., 15 (1979), 1824–1834 (in Russian) | MR | Zbl

[21] Takhtadjan L., Faddeev L., The Hamiltonian approach to soliton theory, Springer Verlag, Berlin, 1987

[22] Zakharov V., Mikhailov A., “On the integrability of classical spinor models in two-dimensional space-time”, Comm. Math. Phys., 74 (1980), 21–40 | DOI | MR

[23] Zakharov V., Manakov S., “On the theory of resonant interactions of wave packets in nonlinear media”, JETP, 69:5 (1975), 1654–1673 | MR

[24] Zakharov V., Manakov S., Novikov S., Pitaevskii L., Theory of solitons: the inverse scattering method, Plenum, New York, 1984 | MR | Zbl

[25] Zakharov V., Shabat A., “Integration of the nonlinear equations of mathematical physics by the inverse scattering method”, Funktsional. Anal. i Prilozhen, 13:3 (1979), 13–22 (in Russian) | MR | Zbl