An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero–Sutherland Models
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review a recent construction of an explicit analytic series representation for symmetric polynomials which up to a groundstate factor are eigenfunctions of Calogero–Sutherland type models. We also indicate a generalisation of this result to polynomials which give the eigenfunctions of so-called “deformed” Calogero–Sutherland type models.
Keywords: quantum integrable systems; orthogonal polynomials; symmetric functions.
@article{SIGMA_2007_3_a36,
     author = {Martin Halln\"as},
     title = {An {Explicit} {Formula} for {Symmetric} {Polynomials} {Related} to the {Eigenfunctions} of {Calogero{\textendash}Sutherland} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a36/}
}
TY  - JOUR
AU  - Martin Hallnäs
TI  - An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero–Sutherland Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a36/
LA  - en
ID  - SIGMA_2007_3_a36
ER  - 
%0 Journal Article
%A Martin Hallnäs
%T An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero–Sutherland Models
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a36/
%G en
%F SIGMA_2007_3_a36
Martin Hallnäs. An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero–Sutherland Models. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a36/

[1] Baker T. H., Forrester P. J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; solv-int/9608004 | DOI | MR | Zbl

[2] Calogero F., “Groundstate of a one-dimensional $N$-body system”, J. Math. Phys., 10 (1969), 2197–2200 | DOI | MR

[3] Calogero F., “Solution of the one-dimensional $N$ body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[4] Chalykh O., Feigin M., Veselov A., “New integrable generalizations of Calogero–Moser quantum problems”, J. Math. Phys., 39 (1998), 695–703 | DOI | MR | Zbl

[5] Desrosiers P., Lapointe L., Mathieu P., “Explicit formulas for the generalized Hermite polynomials in superspace”, J. Phys. A: Math. Gen., 37 (2004), 1251–1268 ; hep-th/0309067 | DOI | MR | Zbl

[6] Gómez-Ullate D., González-López A., Rodríguez M. A., “New algebraic quantum many-body problems”, J. Phys. A: Math. Gen., 33 (2000), 7305–7335 ; nlin.SI/0003005 | DOI | MR | Zbl

[7] Hallnäs M., Langmann E., “Explicit formulae for the eigenfunctions of the $N$-body Calogero model”, J. Phys. A: Math. Gen., 39 (2006), 3511–3533 ; math-ph/0511040 | DOI | MR | Zbl

[8] Hallnäs M., Langmann E., Quantum Calogero–Sutherland type models and generalised classical polynomials, in preparation

[9] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22 ; q-alg/9610016 | DOI | MR | Zbl

[10] Kuznetsov V. B., Mangazeev V. V., Sklyanin E. K., “$Q$-operator and factorised separation chain for Jack polynomials”, Indag. Math. (N.S.), 14 (2003), 451–482 ; math.CA/0306242 | DOI | MR | Zbl

[11] Langmann E., “Algorithms to solve the (quantum) Sutherland model”, J. Math. Phys., 42 (2001), 4148–4157 ; math-ph/0104039 | DOI | MR | Zbl

[12] Langmann E., “A method to derive explicit formulas for an elliptic generalization of the Jack polynomials”, Proceedings of the Conference “Jack, Hall-Littlewood and Macdonald Polynomials” (September 23–26, 2003, Edinburgh), Contemp. Math., 417, eds. V. B. Kuznetsov and S. Sahi, 2006, 257–270 ; math-ph/0511015 | MR | Zbl

[13] Lassalle M., “Polynômes de Jacobi généralisés”, C. R. Math. Acad. Sci. Paris, 312 (1991), 425–428 | MR | Zbl

[14] Lassalle M., “Polynômes de Laguerre généralisés”, C. R. Math. Acad. Sci. Paris, 312 (1991), 725–728 | MR | Zbl

[15] Lassalle M., “Polynômes de Hermite généralisés”, C. R. Math. Acad. Sci. Paris, 313 (1991), 579–582 | MR | Zbl

[16] Lassalle M., Schlosser M., “Inversion of the Pieri formula for MacDonald polynomials”, Adv. Math., 202 (2006), 289–325 ; math.CO/0402127 | DOI | MR | Zbl

[17] MacDonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995 | MR | Zbl

[18] MacDonald I. G., Hypergeometric functions, unpublished manuscript

[19] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[20] Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, 1975 | MR | Zbl

[21] Sergeev A. N., Veselov A. P., “Deformed quantum Calogero–Moser problems and Lie superalgebras”, Comm. Math. Phys., 245 (2004), 249–278 ; math-ph/0303025 | DOI | MR | Zbl

[22] Sergeev A. N., Veselov A. P., “Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials”, Adv. Math., 192 (2005), 341–375 ; math-ph/0307036 | DOI | MR | Zbl

[23] Sutherland B., “Quantum many-body problem in one dimension: ground state”, J. Math. Phys., 12 (1971), 246–250 | DOI

[24] Sutherland B., “Exact results for a quantum many-body problem in one dimension, II”, Phys. Rev. A, 5 (1972), 1372–1376 | DOI

[25] Szegő G., Orthogonal polynomials, American Mathematical Society, 1939

[26] van Diejen J. F., “Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement”, Comm. Math. Phys., 188 (1997), 467–497 ; q-alg/9609032 | DOI | MR | Zbl

[27] Lapointe L., Morse J., van Diejen J. F., “Determinantal construction of orthogonal polynomials associated with root systems”, Compos. Math., 140 (2004), 255–273 ; math.CO/0303263 | DOI | MR | Zbl