By Magri's Theorem, Self-Dual Gravity is Completely Integrable
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By Magri's theorem the bi-Hamiltonian structure of Plebanski's second heavenly equation proves that (anti)-self-dual gravity is a completely integrable system in four dimensions.
Keywords: self-dual gravity; Plebanski equation; Magri's theorem.
@article{SIGMA_2007_3_a33,
     author = {Yavuz Nutku},
     title = {By {Magri's} {Theorem,} {Self-Dual} {Gravity} is {Completely} {Integrable}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a33/}
}
TY  - JOUR
AU  - Yavuz Nutku
TI  - By Magri's Theorem, Self-Dual Gravity is Completely Integrable
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a33/
LA  - en
ID  - SIGMA_2007_3_a33
ER  - 
%0 Journal Article
%A Yavuz Nutku
%T By Magri's Theorem, Self-Dual Gravity is Completely Integrable
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a33/
%G en
%F SIGMA_2007_3_a33
Yavuz Nutku. By Magri's Theorem, Self-Dual Gravity is Completely Integrable. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a33/

[1] Neyzi F., Nutku Y., Sheftel M. B., “Multi-Hamiltonian structure of Plebanski's second heavenly equation”, J. Phys. A: Math. Gen., 38 (2005), 8473–8485 ; nlin.SI/0505030 | DOI | MR | Zbl

[2] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[3] Magri F., “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems, Lecture Notes in Phys., 120, eds. M. Boiti, F. Pempinelli and G. Soliani, Springer, New York, 1980, 233–263 | MR

[4] Plebanski J. F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR

[5] Nutku Y., Halil M., “Colliding impulsive gravitational waves”, Phys. Rev. Lett., 39 (1977), 1379–1382 | DOI

[6] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl

[7] Nutku Y., “On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure”, J. Math. Phys., 28 (1987), 2579–2585 | DOI | MR | Zbl

[8] Olver P. J., Nutku Y., “Hamiltonian structures for systems of hyperbolic conservation laws”, J. Math. Phys., 29 (1988), 1610–1619 | DOI | MR | Zbl

[9] Calabi E., “The space of Kähler metrics”, Proceedings of the International Congress of Mathematicians (1954, Amsterdam), 2, North-Holland, Amsterdam, 1956, 206–207

[10] Nutku Y., “Hamiltonian structure of real Monge–Ampère equations”, J. Phys. A: Math. Gen., 29 (1996), 3257–3280 ; solv-int/9812023 | DOI | MR | Zbl

[11] Dirac P. A. M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1964 | MR

[12] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries of the complex Monge–Ampère equation yield hyper-Kahler metrics without continuous symmetries”, J. Phys. A: Math. Gen., 36 (2003), 10023–10037 ; math-ph/0403020 | DOI | MR | Zbl

[13] Santini P. M., Fokas A. S., “Recursion operators and bi-Hamiltonian structures in multidimensions. I”, Comm. Math. Phys., 115 (1988), 375–419 | DOI | MR | Zbl