@article{SIGMA_2007_3_a33,
author = {Yavuz Nutku},
title = {By {Magri's} {Theorem,} {Self-Dual} {Gravity} is {Completely} {Integrable}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a33/}
}
Yavuz Nutku. By Magri's Theorem, Self-Dual Gravity is Completely Integrable. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a33/
[1] Neyzi F., Nutku Y., Sheftel M. B., “Multi-Hamiltonian structure of Plebanski's second heavenly equation”, J. Phys. A: Math. Gen., 38 (2005), 8473–8485 ; nlin.SI/0505030 | DOI | MR | Zbl
[2] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[3] Magri F., “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems, Lecture Notes in Phys., 120, eds. M. Boiti, F. Pempinelli and G. Soliani, Springer, New York, 1980, 233–263 | MR
[4] Plebanski J. F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[5] Nutku Y., Halil M., “Colliding impulsive gravitational waves”, Phys. Rev. Lett., 39 (1977), 1379–1382 | DOI
[6] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl
[7] Nutku Y., “On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure”, J. Math. Phys., 28 (1987), 2579–2585 | DOI | MR | Zbl
[8] Olver P. J., Nutku Y., “Hamiltonian structures for systems of hyperbolic conservation laws”, J. Math. Phys., 29 (1988), 1610–1619 | DOI | MR | Zbl
[9] Calabi E., “The space of Kähler metrics”, Proceedings of the International Congress of Mathematicians (1954, Amsterdam), 2, North-Holland, Amsterdam, 1956, 206–207
[10] Nutku Y., “Hamiltonian structure of real Monge–Ampère equations”, J. Phys. A: Math. Gen., 29 (1996), 3257–3280 ; solv-int/9812023 | DOI | MR | Zbl
[11] Dirac P. A. M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1964 | MR
[12] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries of the complex Monge–Ampère equation yield hyper-Kahler metrics without continuous symmetries”, J. Phys. A: Math. Gen., 36 (2003), 10023–10037 ; math-ph/0403020 | DOI | MR | Zbl
[13] Santini P. M., Fokas A. S., “Recursion operators and bi-Hamiltonian structures in multidimensions. I”, Comm. Math. Phys., 115 (1988), 375–419 | DOI | MR | Zbl