@article{SIGMA_2007_3_a32,
author = {Orlando Ragnisco and Federico Zullo},
title = {Continuous and {Discrete} {(Classical)} {Heisenberg} {Spin} {Chain} {Revised}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a32/}
}
Orlando Ragnisco; Federico Zullo. Continuous and Discrete (Classical) Heisenberg Spin Chain Revised. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a32/
[1] Takhtajan L. A., “Integration of the continuous Heisenberg spin chain through the inverse scattering method”, Phys. Lett. A, 64 (1977), 235–237 | DOI | MR
[2] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Berlin, 1987 | MR
[3] Orphanidis S. J., “$SU(N)$ Heisenberg spin chain”, Phys. Lett. A, 75 (1980), 304–306 | DOI | MR
[4] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method, recent developments”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. J. Hietarinta and C. Montonen, 1982, 61–119 | MR | Zbl
[5] Sklyanin E. K., “Quantum inverse scattering method. Selected topics”, Quantum Groups and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. M. L. Ge, World Scientific, Singapore, 1992, 63–97 ; hep-th/9211111 | MR
[6] Bethe H. A., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71 (1931), 205–226 | DOI
[7] Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds, Quaderno di matematica S19, Dipartimento di matematica, Università di Milano, 1984
[8] Magri F., Morosi C., Ragnisco O., “Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications”, Comm. Math. Phys., 99 (1985), 115–140 | DOI | MR | Zbl
[9] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré, Phys. Theor., 53 (1990), 35–81 | MR | Zbl
[10] Potts R., “Some generalized order-disorder transformations”, Proc. Camb. Phil. Soc., 48 (1952), 106–109 | DOI | MR | Zbl
[11] Wu F. Y., “The Potts model”, Rev. Modern Phys., 54 (1982), 235–268 | DOI | MR
[12] Hartmann A. K., “Calculation of partition functions by measuring component distributions”, Phys. Rev. Lett., 94 (2005), 050601, 4 pp., ages ; cond-mat/0410583 | DOI
[13] Ragnisco O., Santini P. M., “A unified algebraic approach to integral and discrete evolution equations”, Inverse Problems, 6 (1990), 441–452 | DOI | MR | Zbl
[14] Nijenhuis A., “Connection-free differential geometry”, Proc. Conf. Differential Geometry and Applications (August 28 – September 1, 1995, Masaryk University, Brno, Czech Republic), eds. J. Janyska, I. Kolar and J. Slovak, Masaryk University Brno, 1996, 171–190 | MR | Zbl
[15] Kreyszig E., Introductory functional analysis with applications, Wiley Classic Library, 1989 | MR | Zbl
[16] Morosi C., “The $R$-matrix theory and the reduction of Poisson manifolds”, J. Math. Phys., 33 (1992), 941–952 | DOI | MR | Zbl
[17] Morosi C., Tondo G., “Yang–Baxter equations and intermediate long wave hierarchies”, Comm. Math. Phys, 122 (1989), 91–103 | DOI | MR | Zbl
[18] Morosi C., Tondo G., “Some remarks on the bi-Hamiltonian structure of integral and discrete evolution equations”, Inverse Problems, 6 (1990), 557–566 | DOI | MR | Zbl