@article{SIGMA_2007_3_a31,
author = {Gregorio Falqui},
title = {A~Note on the {Rotationally} {Symmetric} $\mathrm{SO}(4)$ {Euler} {Rigid} {Body}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a31/}
}
Gregorio Falqui. A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a31/
[1] Adler M., van Moerbeke P., “Completely integrable systems, Euclidean Lie algebras, and curves”, Adv. Math., 3 (1980), 267–317 | DOI | MR
[2] Audin M., Spinning tops. A course on integrable systems, Cambridge Studies in Advanced Mathematics, 51, Cambridge, 1996 | MR | Zbl
[3] Belokolos E., Bobenko A., Enolski V., Its A., Matveev V., Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, Berlin, 1994
[4] Błaszak M., “Theory of separability of multi-Hamiltonian chains”, J. Math. Phys., 40 (1999), 5725–5738 | DOI | MR
[5] Bobenko A., “Euler equations on the algebras $e(3)$ and $\mathrm{so}(4)$. Isomorphism of the integrable cases”, Funktsional. Anal. i Prilozhen., 20 (1986), 64–66 | DOI | MR | Zbl
[6] Bolsinov A., “A criterion for the completeness of a family of functions in involution that is constructed by the argument translation method”, Soviet Math. Dokl., 38 (1989), 161–165 | MR | Zbl
[7] Bolsinov A., “Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution”, Izv. Akad. Nauk SSSR Ser. Mat., 55 (1991), 68–92 | MR
[8] Falqui G., Magri F., Tondo G., “Bihamiltonian systems and separation of variables: an example from the Boussinesq hierarchy”, Theoret. and Math. Phys., 122:2 (2000), 176–192 ; solv-int/9906009 | DOI | MR | Zbl
[9] Falqui G., Poisson pencils, integrability, and separation of variables, nlin-SI/0310028
[10] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 ; nlin.SI/0204029 | DOI | MR | Zbl
[11] Gel'fand I. M., Zakharevich I., “On the local geometry of a bi-Hamiltonian structure”, The Gel'fand Mathematical Seminars 1990–1992, eds. L. Corwin et al., Birkhäuser, Boston, 1993, 51–112 | MR | Zbl
[12] Gel'fand I. M., Zakharevich I., “Webs, Lenard schemes, and the local geometry of bihamiltonian Toda and Lax structures”, Selecta Math. (N.S.), 6 (2000), 131–183 ; math.DG/9903080 | DOI | MR | Zbl
[13] Kuznetsov V. B., “Quadrics on Riemannian spaces of constant curvature. Separation of variables and a connection with the Gaudin magnet”, Teoret. and Math. Phys., 91:1 (1992), 385–404 | DOI | MR | Zbl
[14] Kuznetsov V. B., “Simultaneous separation for the Kowalevski and Goryachev–Chaplygin gyrostats”, J. Phys. A: Math. Gen., 35 (2002), 6419–6430 ; nlin.SI/0201004 | DOI | MR | Zbl
[15] Kuznetsov V. B., Nijhoff F. W., Sklyanin E. K., “Separation of variables for the Ruijsenaars system”, Comm. Math. Phys., 189 (1997), 855–877 ; solv-int/9701004 | DOI | MR | Zbl
[16] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37 (2004), 8495–8512 ; nlin.SI/0403028 | DOI | MR | Zbl
[17] Magri F., “Geometry and soliton equations”, La Mécanique Analytique de Lagrange et son héritage, Atti Acc. Sci. Torino Suppl., 124, 1990, 181–209
[18] Magri F., “Lenard chains for classical integrable systems”, Teoret. and Math. Phys., 137:3 (2003), 1716–1722 | DOI | MR | Zbl
[19] Manakov S. V., “A remark on the integration of the Eulerian equations of the dynamics of an $n$-dimensional rigid body”, Funktsional. Anal. i Prilozhen., 10:4 (1976), 93–94 | MR | Zbl
[20] Marikhin V. G., Sokolov V. V., “Separation of variables on a non-hyperelliptic curve”, Regul. Chaotic Dyn., 10 (2005), 59–70 ; nlin.SI/0412065 | DOI | MR | Zbl
[21] Miščenko A. S., Fomenko A. T., “Euler equation on finite-dimensional Lie groups”, Izv. Akad. Nauk SSSR Ser. Mat., 42:2 (1978), 396–415 | MR
[22] Morosi C., Pizzocchero L., “On the Euler equation: bi-Hamiltonian structure and integrals in involution”, Lett. Math. Phys., 37 (1996), 117–135 | DOI | MR | Zbl
[23] Morosi C., Tondo G., “Quasi-bi-Hamiltonian systems and separability”, J. Phys. A: Math. Gen., 30 (1997), 2799–2806 ; solv-int/9702006 | DOI | MR | Zbl
[24] Morosi C., Tondo G., “The quasi-bi-Hamiltonian formulation of the Lagrange top”, J. Phys. A: Math. Gen., 35 (2002), 1741–1750 ; nlin.SI/0201028 | DOI | MR | Zbl
[25] Raţiu T., “Euler–Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body”, Amer. J. Math., 104 (1982), 409–448 | DOI | MR
[26] Sklyanin E., Takebe T., “Separation of variables in the elliptic Gaudin model”, Comm. Math. Phys., 204 (1999), 17–38 ; solv-int/9807008 | DOI | MR | Zbl
[27] Veselov A., Novikov S., “Poisson brackets and complex tori. Algebraic geometry and its applications”, Tr. Mat. Inst. Steklova, 165, 1984, 49–61 | MR | Zbl