A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an $SO(4)$ Euler rigid body with two “inertia momenta” coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.
Keywords: Euler top; separation of variables; bihamiltonian manifolds.
@article{SIGMA_2007_3_a31,
     author = {Gregorio Falqui},
     title = {A~Note on the {Rotationally} {Symmetric} $\mathrm{SO}(4)$ {Euler} {Rigid} {Body}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a31/}
}
TY  - JOUR
AU  - Gregorio Falqui
TI  - A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a31/
LA  - en
ID  - SIGMA_2007_3_a31
ER  - 
%0 Journal Article
%A Gregorio Falqui
%T A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a31/
%G en
%F SIGMA_2007_3_a31
Gregorio Falqui. A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a31/

[1] Adler M., van Moerbeke P., “Completely integrable systems, Euclidean Lie algebras, and curves”, Adv. Math., 3 (1980), 267–317 | DOI | MR

[2] Audin M., Spinning tops. A course on integrable systems, Cambridge Studies in Advanced Mathematics, 51, Cambridge, 1996 | MR | Zbl

[3] Belokolos E., Bobenko A., Enolski V., Its A., Matveev V., Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, Berlin, 1994

[4] Błaszak M., “Theory of separability of multi-Hamiltonian chains”, J. Math. Phys., 40 (1999), 5725–5738 | DOI | MR

[5] Bobenko A., “Euler equations on the algebras $e(3)$ and $\mathrm{so}(4)$. Isomorphism of the integrable cases”, Funktsional. Anal. i Prilozhen., 20 (1986), 64–66 | DOI | MR | Zbl

[6] Bolsinov A., “A criterion for the completeness of a family of functions in involution that is constructed by the argument translation method”, Soviet Math. Dokl., 38 (1989), 161–165 | MR | Zbl

[7] Bolsinov A., “Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution”, Izv. Akad. Nauk SSSR Ser. Mat., 55 (1991), 68–92 | MR

[8] Falqui G., Magri F., Tondo G., “Bihamiltonian systems and separation of variables: an example from the Boussinesq hierarchy”, Theoret. and Math. Phys., 122:2 (2000), 176–192 ; solv-int/9906009 | DOI | MR | Zbl

[9] Falqui G., Poisson pencils, integrability, and separation of variables, nlin-SI/0310028

[10] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 ; nlin.SI/0204029 | DOI | MR | Zbl

[11] Gel'fand I. M., Zakharevich I., “On the local geometry of a bi-Hamiltonian structure”, The Gel'fand Mathematical Seminars 1990–1992, eds. L. Corwin et al., Birkhäuser, Boston, 1993, 51–112 | MR | Zbl

[12] Gel'fand I. M., Zakharevich I., “Webs, Lenard schemes, and the local geometry of bihamiltonian Toda and Lax structures”, Selecta Math. (N.S.), 6 (2000), 131–183 ; math.DG/9903080 | DOI | MR | Zbl

[13] Kuznetsov V. B., “Quadrics on Riemannian spaces of constant curvature. Separation of variables and a connection with the Gaudin magnet”, Teoret. and Math. Phys., 91:1 (1992), 385–404 | DOI | MR | Zbl

[14] Kuznetsov V. B., “Simultaneous separation for the Kowalevski and Goryachev–Chaplygin gyrostats”, J. Phys. A: Math. Gen., 35 (2002), 6419–6430 ; nlin.SI/0201004 | DOI | MR | Zbl

[15] Kuznetsov V. B., Nijhoff F. W., Sklyanin E. K., “Separation of variables for the Ruijsenaars system”, Comm. Math. Phys., 189 (1997), 855–877 ; solv-int/9701004 | DOI | MR | Zbl

[16] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37 (2004), 8495–8512 ; nlin.SI/0403028 | DOI | MR | Zbl

[17] Magri F., “Geometry and soliton equations”, La Mécanique Analytique de Lagrange et son héritage, Atti Acc. Sci. Torino Suppl., 124, 1990, 181–209

[18] Magri F., “Lenard chains for classical integrable systems”, Teoret. and Math. Phys., 137:3 (2003), 1716–1722 | DOI | MR | Zbl

[19] Manakov S. V., “A remark on the integration of the Eulerian equations of the dynamics of an $n$-dimensional rigid body”, Funktsional. Anal. i Prilozhen., 10:4 (1976), 93–94 | MR | Zbl

[20] Marikhin V. G., Sokolov V. V., “Separation of variables on a non-hyperelliptic curve”, Regul. Chaotic Dyn., 10 (2005), 59–70 ; nlin.SI/0412065 | DOI | MR | Zbl

[21] Miščenko A. S., Fomenko A. T., “Euler equation on finite-dimensional Lie groups”, Izv. Akad. Nauk SSSR Ser. Mat., 42:2 (1978), 396–415 | MR

[22] Morosi C., Pizzocchero L., “On the Euler equation: bi-Hamiltonian structure and integrals in involution”, Lett. Math. Phys., 37 (1996), 117–135 | DOI | MR | Zbl

[23] Morosi C., Tondo G., “Quasi-bi-Hamiltonian systems and separability”, J. Phys. A: Math. Gen., 30 (1997), 2799–2806 ; solv-int/9702006 | DOI | MR | Zbl

[24] Morosi C., Tondo G., “The quasi-bi-Hamiltonian formulation of the Lagrange top”, J. Phys. A: Math. Gen., 35 (2002), 1741–1750 ; nlin.SI/0201028 | DOI | MR | Zbl

[25] Raţiu T., “Euler–Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body”, Amer. J. Math., 104 (1982), 409–448 | DOI | MR

[26] Sklyanin E., Takebe T., “Separation of variables in the elliptic Gaudin model”, Comm. Math. Phys., 204 (1999), 17–38 ; solv-int/9807008 | DOI | MR | Zbl

[27] Veselov A., Novikov S., “Poisson brackets and complex tori. Algebraic geometry and its applications”, Tr. Mat. Inst. Steklova, 165, 1984, 49–61 | MR | Zbl