@article{SIGMA_2007_3_a30,
author = {Edwin Langmann},
title = {Singular {Eigenfunctions} of {Calogero{\textendash}Sutherland} {Type} {Systems} and {How} to {Transform} {Them} into {Regular} {Ones}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a30/}
}
TY - JOUR AU - Edwin Langmann TI - Singular Eigenfunctions of Calogero–Sutherland Type Systems and How to Transform Them into Regular Ones JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a30/ LA - en ID - SIGMA_2007_3_a30 ER -
%0 Journal Article %A Edwin Langmann %T Singular Eigenfunctions of Calogero–Sutherland Type Systems and How to Transform Them into Regular Ones %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a30/ %G en %F SIGMA_2007_3_a30
Edwin Langmann. Singular Eigenfunctions of Calogero–Sutherland Type Systems and How to Transform Them into Regular Ones. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a30/
[1] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[2] Sutherland B., “Exact results for a quantum many-body problem in one dimension. II”, Phys. Rev. A, 5:3 (1972), 1372–1376 | DOI | MR
[3] Kuznetsov V. B., Mangazeev V. V., Sklyanin E. K., “$Q$-operator and factorised separation chain for Jack polynomials”, Indag. Math. (N.S.), 14 (2003), 451–482 ; math.CA/0306242 | DOI | MR | Zbl
[4] Langmann E., “Anyons and the elliptic Calogero–Sutherland model”, Lett. Math. Phys., 54 (2000), 279–289 ; math-ph/0007036 | DOI | MR | Zbl
[5] Langmann E., “Algorithms to solve the (quantum) Sutherland model”, J. Math. Phys., 42 (2001), 4148–4157 ; math-ph/0104039 | DOI | MR | Zbl
[6] Langmann E., An explicit solution of the (quantum) elliptic Calogero–Sutherland model, math-ph/0407050 | MR
[7] Langmann E., “A method to derive explicit formulas for an elliptic generalization of the Jack polynomials”, Proceedings of Workshop “Jack, Hall–Littlewood and Macdonald polynomials” (September 23–26, 2003, Edinburgh), Contemp. Math., 417, eds. V. B. Kuznetsov and S. Sahi, 2006, 257–270 ; math-ph/0511015 | MR | Zbl
[8] Langmann E., An algorithm to solve the elliptic Calogero–Sutherland model, math-ph/0401029 | MR
[9] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl
[10] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37 (2004), 8495–8512 ; nlin.SI/0403028 | DOI | MR | Zbl
[11] Bender C. M., Boettcher S., Meisinger P., “PT-symmetric quantum mechanics”, J. Math. Phys., 40 (1999), 2201–2229 ; quant-ph/9809072 | DOI | MR | Zbl
[12] Stanley R. P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl
[13] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[14] Hallnäs M., Langmann E., “Explicit formulas for the eigenfunctions of the $N$-body Calogero model”, J. Phys. A: Math. Gen., 39 (2006), 3511–3533 ; math-ph/0511040 | DOI | MR | Zbl
[15] Hallnäs M., Langmann E., Quantum Calogero–Sutherland type models associtated with orthogonal polynomials, work in progress
[16] Sen D., “A multispecies Calogero–Sutherland model”, Nuclear Phys. B, 479 (1996), 554–574 ; cond-mat/9512014 | DOI | MR | Zbl
[17] Heckman G. J., Opdam E. M., “Root systems and hypergeometric functions. I”, Compos. Math., 64 (1987), 329–352 | MR | Zbl
[18] Chalykh O., Feigin M., Veselov A., “New integrable generalizations of Calogero–Moser quantum problem”, J. Math. Phys., 39 (1998), 695–703 | DOI | MR | Zbl
[19] Sergeev A. N., Veselov A. P., “Deformed quantum Calogero–Moser problems and Lie superalgebras”, Comm. Math. Phys., 245 (2005), 249–278 ; math-ph/0303025 | DOI | MR
[20] Sergeev A. N., Veselov A. P., “Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials”, Adv. Math., 192 (2005), 341–375 ; math-ph/0307036 | DOI | MR | Zbl
[21] Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975 | MR | Zbl
[22] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1979 | MR | Zbl
[23] Awata H., Fukuma M. Matsuo Y., Odake S., “Representation theory of the $W_{1+\infty}$ algebra”, Progr. Theoret. Phys. Suppl., 118 (1995), 343–374 ; hep-th/9408158 | DOI | MR
[24] Mimachi K., Yamada Y., “Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials”, Comm. Math. Phys., 174 (1995), 447–455 | DOI | MR | Zbl
[25] Awata H., Matsuo Y., Odake S., Shiraishi J., “Excited states of Calogero–Sutherland model and singular vectors of the $W_N$ algebra”, Nuclear Phys. B, 449 (1995), 347–374 ; hep-th/9503043 | DOI | MR
[26] Wojciechowski S., “The analogue of the Bäcklund transformation for integrable many-body systems”, J. Phys. A: Math. Gen., 15 (1982), L653–L657 | DOI | MR