@article{SIGMA_2007_3_a29,
author = {Jos\'e F. Cari\~nena and Manuel F. Ra\~nada and Mariano Santander},
title = {A~Super-Integrable {Two-Dimensional} {Non-Linear} {Oscillator} with an {Exactly} {Solvable} {Quantum} {Analog}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a29/}
}
TY - JOUR AU - José F. Cariñena AU - Manuel F. Rañada AU - Mariano Santander TI - A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a29/ LA - en ID - SIGMA_2007_3_a29 ER -
%0 Journal Article %A José F. Cariñena %A Manuel F. Rañada %A Mariano Santander %T A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a29/ %G en %F SIGMA_2007_3_a29
José F. Cariñena; Manuel F. Rañada; Mariano Santander. A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a29/
[1] Bertrand M. J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C. R. Math. Acad. Sci. Paris, 77:16 (1873), 849–854
[2] Fris T. I., Mandrosov V., Smorodinsky Y. A., Uhlir M., Winternitz P., “On higher symmetries in quantum mechanics”, Phys. Lett., 16 (1965), 354–356 | DOI | MR
[3] Evans N. W., “Superintegrability of the Smorodinsky–Winternitz system”, Phys. Lett., 147 (1990), 483–486 | DOI | MR
[4] Evans N. W., “Group theory of the Smorodinsky–Winternitz system”, J. Math. Phys., 32 (1991), 3369–3375 | DOI | MR | Zbl
[5] Tempesta P., Winternitz P. et al. (ed.), “Super-integrability in classical and quantum systems”, Proceedings of the Workshop held at the Université de Montréal, CRM Proc. Lecture Notes, 37, AMS, Providence, 2004
[6] Kalnins E. G., Kress J. M., Miller W., “Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp., ages | DOI | MR | Zbl
[7] Kalnins E. G., Kress J. M., Miller W., “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp., ages | DOI | MR | Zbl
[8] Błaszak M., Sergyeyev A., “Maximal superintegrability of Benenti systems”, J. Phys. A: Math. Gen., 38 (2005), L1–L5 ; nlin.SI/0412018 | DOI | MR
[9] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., ages ; math-ph/0412055 | DOI | MR | Zbl
[10] Grosche C., Pogosyan G. S., Sissakian A. N., “Path integral discussion for Smorodinsky–Winternitz potentials. II. Two- and three-dimensional sphere”, Fortschr. Phys., 43 (1995), 523–563 | DOI | MR | Zbl
[11] Rañada M. F., “Superintegrabe $n=2$ systems, quadratic constants of motion, and potentials of Drach”, J. Math. Phys., 38 (1997), 4165–4178 | DOI | MR | Zbl
[12] Kalnins E. G., Miller W., Pogosyan G. S., “Superintegrability on the two-dimensional hyperboloid”, J. Math. Phys., 38 (1997), 5416–5433 | DOI | MR | Zbl
[13] Rañada M. F., Santander M., “Superintegrable systems on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR | Zbl
[14] Kalnins E. G., Miller W., Pogosyan G. S., “Coulomb-oscillator duality in spaces of constant curvature”, J. Math. Phys., 41 (2000), 2629–2657 ; quant-ph/9906055 | DOI | MR | Zbl
[15] Slawianowski J. J., “Bertrand systems on spaces of constant sectional curvature”, Rep. Math. Phys., 46 (2000), 429–460 | DOI | MR | Zbl
[16] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720 ; math-ph/0102006 | DOI | MR | Zbl
[17] Rañada M. F., Santander M., “On the harmonic oscillator on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 43 (2002), 431–451 | DOI | MR | Zbl
[18] Kalnins E. G., Kress J. M., Winternitz P., “Superintegrability in a two-dimensional space of nonconstant curvature”, J. Math. Phys., 43 (2002), 970–983 ; math-ph/0108015 | DOI | MR | Zbl
[19] Ballesteros A., Herranz F. J., Santander M., Sanz-Gil T., “Maximal superintegrability on $N$-dimensional curved spaces”, J. Phys. A: Math. Gen., 36 (2003), L93–L99 ; math-ph/0211012 | DOI | MR | Zbl
[20] Rañada M. F., Santander M., “On the harmonic oscillator on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$ II”, J. Math. Phys., 44 (2003), 2149–2167 | DOI | MR | Zbl
[21] Ballesteros A., Herranz F. J., Ragnisco O., “Integrable potentials on spaces with curvature from quantum groups”, J. Phys. A: Math. Gen., 38 (2005), 7129–7144 ; math-ph/0505081 | DOI | MR | Zbl
[22] Herranz F. J., Ballesteros A., “Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., ages ; math-ph/0512084 | MR | Zbl
[23] Mathews P. M., Lakshmanan M., “On a unique nonlinear oscillator”, Quart. Appl. Math., 32 (1974), 215–218 | MR | Zbl
[24] Lakshmanan M., Rajasekar S., Nonlinear dynamics. Integrability, chaos and patterns, Adv. Texts Phys., Springer-Verlag, Berlin, 2003 | MR
[25] Cariñena J. F., Rañada M. F., Santander M., Senthilvelan M., “A non-linear oscillator with quasi-harmonic behaviour: two- and $n$-dimensional oscillators”, Nonlinearity, 17 (2004), 1941–1963 ; math-ph/0406002 | DOI | MR | Zbl
[26] Cariñena J. F., Rañada M. F., Santander M., “A nonlinear deformation of the isotonic oscillator and the Smorodinski–Winternitz system: integrability and superintegrability”, Regul. Chaotic Dyn., 10 (2005), 423–436 | DOI | MR | Zbl
[27] Cariñena J. F., Rañada M. F., Santander M., “Three superintegrable two-dimensional oscillators: super-integrability, nonlinearity and curvature”, Physics of Atomic Nuclei, 70 (2007), 505–512 | DOI
[28] Calogero F., “Solution of a three body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 | DOI | MR
[29] Perelomov A. M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser, 1990 | MR | Zbl
[30] Chalykh O. A., Veselov A. P., “A remark on rational isochronous potentials”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 179–183 ; math-ph/0409062 | DOI | MR
[31] Asorey M., Cariñena J. F., Marmo G., Perelomov A. M., “Isoperiodic classical systems and their quantum counterparts”, Ann. Phys., 322:6 (2007), 1444–1465 | DOI | MR | Zbl
[32] Pinney E., “The nonlinear differential equation $y''+p(x)y+cy^{-3}=0$”, Proc. Amer. Math. Soc., 1 (1950), 681–681 | DOI | MR | Zbl
[33] Ermakov V., “Second order differential equations. Conditions of complete integrability”, Univ. Isz. Kiev Series III, 9 (1880), 1–25, translation by A. O. Harin | MR
[34] Dongpei Z., “A new potential with the spectrum of an isotonic oscillator”, J. Phys. A: Math. Gen., 20 (1987), 4331–4336 | DOI | MR
[35] Cariñena J. F., Marmo G., Rañada M. F., “Non-symplectic symmetries and bi–Hamiltonian structures of the rational harmonic oscillator”, J. Phys. A: Math. Gen., 35 (2002), L679–L686 ; hep-th/0210260 | DOI | MR | Zbl
[36] Higgs P. W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl
[37] Bonatsos D., Daskaloyannis C., Kokkotas K., “Quantum-algebraic description of quantum superintegrable systems in two dimensions”, Phys. Rev. A, 48 (1993), R3407–R3410 | DOI | MR
[38] Bonatsos D., Daskaloyannis C., Kokkotas K., “Deformed oscillator algebras for two-dimensional quantum superintegrable systems”, Phys. Rev. A, 50 (1994), 3700–3709 ; hep-th/9309088 | DOI | MR
[39] Cariñena J. F., Rañada M. F., Santander M., “One-dimensional model of a quantum nonlinear harmonic oscillator”, Rep. Math. Phys., 54 (2004), 285–293 ; hep-th/0501106 | DOI | MR | Zbl
[40] Cariñena J. F., Rañada M. F., Santander M., “A quantum exactly solvable nonlinear oscillator with quasi-harmonic behaviour”, Ann. Phys., 322 (2007), 434–459 ; math-ph/0604008 | DOI | MR | Zbl
[41] Cariñena J. F., Ramos A., “Riccati equation, factorization method and shape invariance”, Rev. Math. Phys., 12 (2000), 1279–1304 ; math-ph/9910020 | DOI | MR | Zbl
[42] Gendenshteïn L.É., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[43] Gendenshteïn L.É., Krive I. V., “Supersymmetry in quantum mechanics”, Soviet Phys. Uspekhi, 28 (1985), 645–666 | DOI | MR
[44] Cariñena J. F., Rañada M. F., Santander M., “The quantum harmonic oscillator on the sphere and the hyperbolic plane”, Ann. Phys., 322:10 (2007), 2249–2278 | DOI | MR | Zbl