@article{SIGMA_2007_3_a28,
author = {Alain Lascoux},
title = {The {6~Vertex} {Model} and {Schubert} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a28/}
}
Alain Lascoux. The 6 Vertex Model and Schubert Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a28/
[1] Bressoud D., Proofs and confirmations: the story of alternating sign matrix conjecture, Cambridge University Press, 1999 | MR | Zbl
[2] Fomin S., Kirillov A., “The Yang–Baxter equation, symmetric functions and Schubert polynomials”, Discrete Math., 153 (1996), 123–143 | DOI | MR | Zbl
[3] Gaudin M., La fonction d'onde de Bethe, Masson, 1983 | MR | Zbl
[4] Hamel A. M., King R. C., “Symplectic shifted tableaux and deformations of Weyl's denominator formula for $\mathrm{sp}(2n)$”, J. Algebraic Combin., 16 (2002), 269–300 | DOI | MR | Zbl
[5] Hamel A. M., King R. C., $U$-turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration, math.CO/0312169 | MR
[6] Izergin A. G., “Partition function of the six-vertex model in a finite volume”, Soviet Phys. Dokl., 32 (1987), 878–879 | Zbl
[7] J. Soviet. Mat., 47 (1989), 2413–2422 | DOI | MR
[8] Kuperberg G., “Another proof of the alternating sign matrix conjecture”, Int. Math. Res. Not., 1996:3 (1996), 139–150 ; math.CO/9712207 | DOI | MR | Zbl
[9] Lascoux A., “Square Ice enumeration”, Sém. Lothar. Combin., 42 (1999), Art. B42p, 15 pp., ages | MR
[10] Lascoux A., Chern and Yang through Ice, Preprint, 2002 | Zbl
[11] Lascoux A., Symmetric functions combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, 99, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[12] Lascoux A., Schützenberger M. P., “Treillis et bases des groupes de Coxeter”, Electron. J. Combin., 3:2 (1996), R27, 35 pp., ages | MR | Zbl
[13] Macdonald I. G., Notes on Schubert polynomials, LACIM Publi. Université Montréal, 1991 | MR
[14] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, Oxford, 1995 | MR | Zbl
[15] Mills W. H., Robbins D. P., Rumse H. Y., “Alternating-sign matrices and descending plane partitions”, J. Combin. Theory Ser. A, 34 (1983), 340–359 | DOI | MR | Zbl
[16] Okada S., “Alternating sign matrices and some deformations of Weyl's denominator formula”, J. Algebraic Combin., 2 (1993), 155–176 | DOI | MR | Zbl
[17] Robbins D. P., Rumsey H., “Determinants and alternating sign matrices”, Adv. Math., 62 (1986), 169–184 | DOI | MR | Zbl
[18] Zeilberger D., “Proof of the alternating sign matrix conjecture”, Electron. J. Combin., 3:2 (1996), R13, 84 pp., ages ; math.CO/9407211 | MR | Zbl