Bethe Ansatz for the Ruijsenaars Model of $BC_1$-Type
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider one-dimensional elliptic Ruijsenaars model of type $BC_1$. It is given by a three-term difference Schrödinger operator $L$ containing 8 coupling constants. We show that when all coupling constants are integers, $L$ has meromorphic eigenfunctions expressed by a variant of Bethe ansatz. This result generalizes the Bethe ansatz formulas known in the $A_1$-case.
Keywords: Heun equation; three-term difference operator; Bloch eigenfunction; spectral curve.
@article{SIGMA_2007_3_a27,
     author = {Oleg Chalykh},
     title = {Bethe {Ansatz} for the {Ruijsenaars} {Model} of $BC_1${-Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a27/}
}
TY  - JOUR
AU  - Oleg Chalykh
TI  - Bethe Ansatz for the Ruijsenaars Model of $BC_1$-Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a27/
LA  - en
ID  - SIGMA_2007_3_a27
ER  - 
%0 Journal Article
%A Oleg Chalykh
%T Bethe Ansatz for the Ruijsenaars Model of $BC_1$-Type
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a27/
%G en
%F SIGMA_2007_3_a27
Oleg Chalykh. Bethe Ansatz for the Ruijsenaars Model of $BC_1$-Type. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a27/

[1] Askey R., Wilson J., “Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials”, Mem. Amer. Math. Soc., no. 319, 1985, 1–53 | MR

[2] Chalykh O., “Macdonald polynomials and algebraic integrability”, Adv. Math., 166 (2002), 193–259 ; math.QA/0212313 | DOI | MR | Zbl

[3] Chalykh O., Etingof P., Oblomkov A., “Generalized Lamé operators”, Comm. Math. Phys., 239 (2003), 115–153 ; math.QA/0212029 | DOI | MR | Zbl

[4] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl

[5] van Diejen J. F., “Difference Calogero–Moser systems and finite Toda chains”, J. Math. Phys., 36 (1995), 1299–1323 | DOI | MR | Zbl

[6] Dubrovin B.A., Krichever I. M., Novikov S. P., “Integrable systems I”, Dynamical systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 177–332 | MR

[7] Felder G., Varchenko A., “Algebraic integrability of the two-body Ruijsenaars operator”, Funktsional Anal. i Prilozhen., 32 (1998), 8–25 ; q-alg/9610024 | DOI | MR | Zbl

[8] Felder G., Varchenko A., “Algebraic Bethe ansatz for the elliptic quantum group $E_{\tau,\eta}(\mathrm sl_2)$”, Nuclear Phys. B, 480 (1996), 485–503 ; q-alg/9605024 | DOI | MR | Zbl

[9] Inozemtsev V. I., “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11–17 | DOI | MR | Zbl

[10] Komori Y., Hikami K., “Quantum integrability of the generalized elliptic Ruijsenaars models”, J. Phys. A: Math. Gen., 30 (1997), 4341–4364 | DOI | MR | Zbl

[11] Komori Y., Hikami K., “Conserved operators of the generalized elliptic Ruijsenaars models”, J. Math. Phys., 39 (1998), 6175–6190 | DOI | MR | Zbl

[12] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $\mathrm{BC}$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Contemp. Math., 138, eds. D. St. P. Richards, 1992, 189–204 | MR | Zbl

[13] Krichever I., Zabrodin A., “Spin generalization of the Ruijsenaars–Schneider model, the nonabelian 2D Toda lattice, and representations of the Sklyanin algebra”, Uspekhi Mat. Nauk, 50:6(306) (1995), 3–56 ; hep-th/9505039 | MR | Zbl

[14] Ruijsenaars S. N. M., “Complete integrability of relativistic Calogero–Moser systems and elliptic functions identities”, Comm. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl

[15] Sklyanin E. K., “Some algebraic structures connected with the Yang–Baxter equation”, Funktsional. Anal. i Prilozhen., 16:4 (1982), 27–34 (Russian) | MR | Zbl

[16] Sklyanin E. K., “Some algebraic structures connected with the Yang–Baxter equation. Representations of a quantum algebra”, Funktsional. Anal. i Prilozhen., 17:4 (1983), 34–48 (Russian) | MR | Zbl

[17] Smirnov A. O., “Elliptic solitons and Heun's equation”, The Kowalevski Property (Leeds, 2000), CRM Proc. Lecture Notes, 32, ed. V. B. Kuznetsov, American Mathematical Society, Providence, RI, 2002, 287–305 ; math.CA/0109149 | MR | Zbl

[18] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. I. The Bethe ansatz method”, Comm. Math. Phys, 235 (2003), 467–494 ; math.CA/0103077 | DOI | MR | Zbl

[19] Treibich A., Verdier J.-L., “Solitons elliptiques”, The Grothendieck Festschrift, Vol. III, Progr. Math., 88, eds. P. Cartier et al., Birkhäuser, Boston, 1990, 437–480 | MR | Zbl

[20] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge University Press, New York, 1962 | MR | Zbl

[21] Zabrodin A., “On the spectral curve of the difference Lamé operator”, Int. Math. Res. Not., no. 11 (1999), 589–614 ; math.QA/9812161 | DOI | MR