@article{SIGMA_2007_3_a26,
author = {R\'emi L\'eandre},
title = {Deformation {Quantization} in {White} {Noise} {Analysis}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a26/}
}
Rémi Léandre. Deformation Quantization in White Noise Analysis. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a26/
[1] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl
[2] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. II. Physical applications”, Ann. Physics, 111 (1978), 111–151 | DOI | MR | Zbl
[3] Berezanskii Yu., Kondratiev Yu., Spectral methods in infinite-dimensional analysis, Vols. 1, 2, Kluwer, Dordrecht, 1995
[4] Dito J., “Star-product approach to quantum field theory: the free scalar field”, Lett. Math. Phys., 20 (1990), 125–134 | DOI | MR | Zbl
[5] Dito J., “Star-products and nonstandard quantization for Klein–Gordon equation”, J. Math. Phys., 33 (1992), 791–801 | DOI | MR
[6] Dito J., “Deformation quantization on a Hilbert space”, Noncommutative Geometry and Physics, eds. Y. Maeda et al., World Scientific, Singapore, 2005, 139–157 ; math.QA/0406583 | MR
[7] Dito G., Léandre R., “A stochastic Moyal product on the Wiener space”, J. Math. Phys., 48:2 (2007), 023509 | DOI | MR | Zbl
[8] Dito J., Sternheimer D., “Deformation quantization: genesis, developments and metamorphoses”, Deformation Quantization, IRMA Lectures Maths. Theor. Phys., ed. G. Halbout, Walter de Gruyter, Berlin, 2002, 9–54 ; math.QA/0201168 | MR
[9] Duetsch M., Fredenhagen K., “Perturbative algebraic field theory and deformation quantization”, Fields Inst. Commun., 30 (2001), 151–160 ; hep-th/0101079 | MR | Zbl
[10] Garding L., Wightman A., “Representations of the commutation relations”, Proc. Natl. Acad. Sci. USA, 40 (1954), 622–626 | DOI | MR | Zbl
[11] Hida T., Analysis of Brownian functionals, Carleton. Maths. Lect. Notes, 13, Ottawa, 1975 | MR | Zbl
[12] Hida T., Kuo H. H., Potthoff J., Streit L., White noise: an infinite dimensional calculus, Kluwer, Dordrecht, 1993 | MR | Zbl
[13] Huang Z., Luo S., “Quantum white noises and free fields”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1:1 (1998), 68–82 | DOI | MR
[14] Huang Z., Rang G., “White noise approach to $\Phi^4_4$ quantum fields”, Acta. Appl. Math., 77 (2003), 299–318 | DOI | MR | Zbl
[15] Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, 2nd ed., North-Holland, Amsterdam, 1989 | MR | Zbl
[16] Léandre R., Rogers A., “Equivariant cohomology, Fock space and loop groups”, J. Phys. A: Math. Gen., 39 (2006), 11929–11946 | DOI | MR | Zbl
[17] Maeda Y., “Deformation quantization and non commutative differential geometry”, Sugaku Expositions, 16 (1991), 224–255 | MR
[18] Malliavin P., “Stochastic calculus of variations and hypoelliptic operators”, Stochastic Analysis, ed. K. Itô, Kinokuyina, Tokyo, 1978, 155–263 | MR
[19] Malliavin P., Stochastic analysis, Springer, Berlin, 1997 | MR | Zbl
[20] Nualart D., Malliavin calculus and related topics, Springer, Berlin, 1995 | MR
[21] Obata N., White noise analysis and Fock space, Lect. Notes. Math., 1577, Springer, Berlin, 1994 | MR | Zbl
[22] Ustunel A. S., An introduction to analysis on Wiener space, Lect. Notes. Math., 1610, Springer, Berlin, 1995 | MR
[23] Weinstein A., “Deformation quantization”, Séminaire Bourbaki, Astérisque, 227, S.M.F., Paris, 1994, 389–409 | MR
[24] Witten E., “Noncommutative geometry and string field theory”, Nuclear Phys. B, 268 (1986), 253–294 | DOI | MR