Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of $(2N-3)$ integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum $sl(2,\mathbb R)$ Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter $z$. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter $z$. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
Keywords: integrable systems; quantum groups; curvature; contraction; harmonic oscillator; Kepler–Coulomb; hyperbolic; de Sitter.
@article{SIGMA_2007_3_a25,
     author = {Orlando Ragnisco and \'Angel Ballesteros and Francisco J. Herranz and Fabio Musso},
     title = {Quantum {Deformations} and {Superintegrable} {Motions} on {Spaces} with {Variable} {Curvature}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a25/}
}
TY  - JOUR
AU  - Orlando Ragnisco
AU  - Ángel Ballesteros
AU  - Francisco J. Herranz
AU  - Fabio Musso
TI  - Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a25/
LA  - en
ID  - SIGMA_2007_3_a25
ER  - 
%0 Journal Article
%A Orlando Ragnisco
%A Ángel Ballesteros
%A Francisco J. Herranz
%A Fabio Musso
%T Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a25/
%G en
%F SIGMA_2007_3_a25
Orlando Ragnisco; Ángel Ballesteros; Francisco J. Herranz; Fabio Musso. Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a25/

[1] Fris J., Mandrosov V., Smorodinsky Ya. A., Uhlir M., Winternitz P., “On higher symmetries in quantum mechanics”, Phys. Lett., 16 (1965), 354–356 | DOI | MR

[2] Evans N. W., “Super-integrability of the Winternitz system”, Phys. Lett. A, 147 (1990), 483–486 | DOI | MR

[3] Rodriguez M. A., Winternitz P., “Quantum superintegrability and exact solvability in $n$ dimensions”, J. Math. Phys., 43 (2002), 1309–1322 ; math-ph/0110018 | DOI | MR | Zbl

[4] Kalnins E. G., Williams G. C., Miller W. Jr., Pogosyan G. S., “On superintegrable symmetry-breaking potentials in $N$-dimensional Euclidean space”, J. Phys. A: Math. Gen., 35 (2002), 4755–4773 | DOI | MR | Zbl

[5] Wojciechowski S., “Superintegrability of the Calogero–Moser system”, Phys. Lett. A, 95 (1983), 279–281 | DOI | MR

[6] Smirnov R. G., Winternitz P., “A class of superintegrable potentials of Calogero type”, J. Math. Phys., 47 (2006), 093505, 8 pp., ages ; math-ph/0606006 | DOI | MR | Zbl

[7] Ranada M. F., “Superintegrability of the Calogero–Moser system: constants of motion, master symmetries, and time-dependent symmetries”, J. Math. Phys., 40 (1999), 236–247 | DOI | MR | Zbl

[8] Gonera C., “On the superintegrability of Calogero–Moser–Sutherland model”, J. Phys. A: Math. Gen., 31 (1998), 4465–4472 | DOI | MR | Zbl

[9] Gonera C., “Isochronic potentials and new family of superintegrable systems”, J. Phys. A: Math. Gen., 37 (2004), 4085–4095 | DOI | MR | Zbl

[10] Ballesteros A., Herranz F. J., Santander M., Sanz-Gil T., “Maximal superintegrability on $N$-dimensional curved spaces”, J. Phys. A: Math. Gen., 36 (2003), L93–L99 ; math-ph/0211012 | DOI | MR | Zbl

[11] Herranz F. J., Ballesteros A., Santander M., Sanz-Gil T., “Maximally superintegrable Smorodinsky–Winternitz systems on the $N$-dimensional sphere and hyperbolic spaces”, Superintegrability in Classical and Quantum Systems, CRM Proc. and Lecture Notes, 37, eds. P. Tempesta et al., AMS, Providence, RI, 2004, 75–89 ; math-ph/0501035 | MR | Zbl

[12] Rañada M. F., Santander M., “Superintegrable systems on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR | Zbl

[13] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Completeness of multiseparable superintegrability on the complex 2-sphere”, J. Phys. A: Math. Gen., 33 (2000), 6791–6806 | DOI | MR | Zbl

[14] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. Jr., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720 ; math-ph/0102006 | DOI | MR | Zbl

[15] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Superintegrability of the two-dimensional hyperboloid”, J. Math. Phys., 38 (1997), 5416–5433 | DOI | MR | Zbl

[16] Higgs P. W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl

[17] Leemon I., “Dynamical symmetries in a spherical geometry. II”, J. Phys. A: Math. Gen., 12 (1979), 489–501 | DOI | MR | Zbl

[18] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Coulomb-oscillator duality in spaces of constant curvature”, J. Math. Phys., 41 (2000), 2629–2657 ; quant-ph/9906055 | DOI | MR | Zbl

[19] Nersessian A., Pogosyan G., “Relation of the oscillator and Coulomb systems on spheres and pseudospheres”, Phys. Rev. A, 63 (2001), 020103, 4 pp., ages ; quant-ph/0006118 | DOI | MR

[20] Herranz F. J., Ballesteros A., “Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., ages ; math-ph/0512084 | MR | Zbl

[21] Blaszak M., Sergyeyev A., “Maximal superintegrability of Benenti systems”, J. Phys. A: Math. Gen., 38 (2005), L1–L5 ; solv-int/0312025 | DOI | MR | Zbl

[22] Ballesteros A., Herranz F. J., “Integrable deformations of oscillator chains from quantum algebras”, J. Phys. A: Math. Gen., 32 (1999), 8851–8862 ; solv-int/9911004 | DOI | MR | Zbl

[23] Kalnins E. G., Kress J. M., Miller W. Jr., Pogosyan G. S., “Complete sets of invariants for dynamical systems that admit a separation of variables”, J. Math. Phys., 43 (2002), 3592–3609 | DOI | MR | Zbl

[24] Kalnins E. G., Kress J. M., Miller W. Jr., Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848 ; math-ph/0307039 | DOI | MR | Zbl

[25] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp., ages | DOI | MR | Zbl

[26] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp., ages | DOI | MR | Zbl

[27] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. III. 3D classical structure theory”, J. Math. Phys., 46 (2005), 103507, 28 pp., ages | DOI | MR | Zbl

[28] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stackel transform and 3D classification theory”, J. Math. Phys., 46 (2006), 043514, 26 pp., ages | DOI | MR

[29] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems”, J. Math. Phys., 46 (2006), 093501, 25 pp., ages | DOI | MR

[30] Ballesteros A., Herranz F. J., “Universal integrals for superintegrable systems on $N$-dimensional spaces of constant curvature”, J. Phys. A: Math. Theor., 40 (2007), F51–F59 ; math-ph/0610040 | DOI | MR | Zbl

[31] Ballesteros A., Herranz F. J., Ragnisco O., “Curvature from quantum deformations”, Phys. Lett. B, 610 (2005), 107–114 ; hep-th/0504065 | DOI | MR

[32] Ballesteros A., Herranz F. J., Ragnisco O., “Integrable potentials on spaces with curvature from quantum groups”, J. Phys. A: Math. Gen., 38 (2005), 7129–7144 ; math-ph/0505081 | DOI | MR | Zbl

[33] Ballesteros A., Herranz F. J., Ragnisco O., “Integrable geodesic motion on 3D curved spaces from non-standard quantum deformations”, Czech. J. Phys., 55 (2005), 1327–1333 ; math-ph/0508038 | DOI | MR

[34] Ballesteros A., Ragnisco O., “A systematic construction of integrable Hamiltonians from coalgebras”, J. Phys. A: Math. Gen., 31 (1998), 3791–3813 ; solv-int/9802008 | DOI | MR | Zbl

[35] Ballesteros A., Herranz F. J., Musso F., Ragnisco O., “Superintegrable deformations of the Smorodinsky–Winternitz Hamiltonian”, Superintegrability in Classical and Quantum Systems, CRM Proc. and Lecture Notes, 37, eds. P. Tempesta et al., AMS, Providence, RI, 2004, 1–14 ; math-ph/0412067 | MR | Zbl

[36] Evans N. W., “Superintegrability in classical mechanics”, Phys. Rev. A, 41 (1990), 5666–5676 | DOI | MR

[37] Schrödinger E., “A method of determining quantum mechanical eigenvalues and eigenfunctions”, Proc. R. Ir. Acad. A, 46 (1940), 9–16 | MR

[38] Ohn C., “$*$-product on $SL(2)$ and the corresponding nonstandard quantum-$U(\mathfrak sl (2))$”, Lett. Math. Phys., 25 (1992), 85–88 | DOI | MR | Zbl

[39] Chari V., Pressley A., A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[40] Herranz F. J., Ortega R., Santander M., “Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry”, J. Phys. A: Math. Gen., 33 (2000), 4525–4551 ; math-ph/9910041 | DOI | MR | Zbl

[41] Herranz F. J., Santander M., “Conformal symmetries of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6601–6618 ; math-ph/0110019 | DOI | MR | Zbl

[42] Ballesteros A., Ragnisco O., “Classical dynamical systems from $q$-algebras: ‘cluster’ variables and explicit solutions”, J. Phys. A: Math. Gen., 36 (2003), 10505–10518 ; math-ph/0307013 | DOI | MR | Zbl