Quantum Super-Integrable Systems as Exactly Solvable Models
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras.
Keywords: quantum integrability; super-integrability; exact solvability; Laplace–Beltrami.
@article{SIGMA_2007_3_a24,
     author = {Allan P. Fordy},
     title = {Quantum {Super-Integrable} {Systems} as {Exactly} {Solvable} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a24/}
}
TY  - JOUR
AU  - Allan P. Fordy
TI  - Quantum Super-Integrable Systems as Exactly Solvable Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a24/
LA  - en
ID  - SIGMA_2007_3_a24
ER  - 
%0 Journal Article
%A Allan P. Fordy
%T Quantum Super-Integrable Systems as Exactly Solvable Models
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a24/
%G en
%F SIGMA_2007_3_a24
Allan P. Fordy. Quantum Super-Integrable Systems as Exactly Solvable Models. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a24/

[1] Boyer C. P., Kalnins E. G., Winternitz P., “Completely integrable relativistic Hamiltonian systems and separation of variables in Hermitian hyperbolic spaces”, J. Math. Phys., 24 (1983), 2022–2034 | DOI | MR

[2] Daskaloyannis C., “Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems”, J. Math. Phys., 42 (2001), 1100–1119 ; math-ph/0003017 | DOI | MR | Zbl

[3] Fordy A. P., “Symmetries, ladder operators and quantum integrable systems”, Glasg. Math. J., 47 (2005), 65–75 | DOI | MR

[4] Fordy A. P., “Darboux related quantum integrable systems on a constant curvature surface”, J. Geom. Phys., 56 (2006), 1709–1727 | DOI | MR | Zbl

[5] Gilmore R., Lie groups, Lie algebras and some of their applications, Wiley, New York, 1974 | Zbl

[6] Harnad J., Vinet L., Yermolayeva O., Zhedanov A., “Two-dimensional Krall–Sheffer polynomials and integrable systems”, J. Phys. A: Math. Gen., 34 (2001), 10619–10625 | DOI | MR | Zbl

[7] Humphreys J. E., Introduction to Lie algebras and representation theory, Springer-Verlag, Berlin, 1972 | MR | Zbl

[8] Infeld L., Hull T., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl

[9] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. Jr., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720 ; math-ph/0102006 | DOI | MR | Zbl

[10] Kalnins E. G., Miller W. Jr., Hakobyan Ye. M., Pogosyan G. S., “Superintegrability on the two-dimensional hyperboloid. II”, J. Math. Phys., 40 (1999), 2291–2306 ; quant-ph/9907037 | DOI | MR | Zbl

[11] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Exact and quasiexact solvability of second-order superintegrable quantum systems. I. Euclidean space preliminaries”, J. Math. Phys., 47 (2006), 033502, 30 pp., ages ; math-ph/0412035 | DOI | MR | Zbl

[12] Krall H. L., Sheffer I. M., “Orthogonal polynomials in two variables”, Ann. Mat. Pura Appl. (4), 76 (1967), 325–376 | DOI | MR | Zbl

[13] Kuznetsov V. B., “Hidden symmetry of the quantum Calogero–Moser system”, Phys. Lett. A, 218 (1996), 212–222 ; solv-int/9509001 | DOI | MR | Zbl

[14] Tempesta P., Turbiner A. V., Winternitz P., “Exact solvability of superintegrable systems”, J. Math. Phys., 42 (2001), 4248–4257 ; hep-th/0011209 | DOI | MR | Zbl

[15] Vinet L., Zhedanov A., “Two-dimensional Krall–Sheffer polynomials and quantum systems on spaces of constant curvature”, Lett. Math. Phys., 65 (2003), 83–94 | DOI | MR | Zbl