A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review properties of so-called special conformal Killing tensors on a Riemannian manifold $(Q,g)$ and the way they give rise to a Poisson–Nijenhuis structure on the tangent bundle $TQ$. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function $E$, homogeneous of degree two in the fibre coordinates on $TQ$. It is shown that when a symmetric type (1,1) tensor field $K$ along the tangent bundle projection $\tau\colon TQ\rightarrow Q$ satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem.
Keywords: special conformal Killing tensors; Finsler spaces.
@article{SIGMA_2007_3_a23,
     author = {Willy Sarlet},
     title = {A~Recursive {Scheme} of {First} {Integrals} of the {Geodesic} {Flow} of {a~Finsler} {Manifold}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a23/}
}
TY  - JOUR
AU  - Willy Sarlet
TI  - A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a23/
LA  - en
ID  - SIGMA_2007_3_a23
ER  - 
%0 Journal Article
%A Willy Sarlet
%T A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a23/
%G en
%F SIGMA_2007_3_a23
Willy Sarlet. A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a23/

[1] Bao D., Chern S.-S., Shen Z., An introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000 | MR

[2] Benenti S., “Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems”, Acta Appl. Math., 87 (2005), 33–91 | DOI | MR | Zbl

[3] Crampin M., Sarlet W., Thompson G., “Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors”, J. Phys. A: Math. Gen., 33 (2000), 8755–8770 | DOI | MR | Zbl

[4] Sarlet W., Vermeire F., “A class of Poisson–Nijenhuis structures on a tangent bundle”, J. Phys. A: Math. Gen., 37 (2004), 6319–6336 ; math.DG/0402076 | DOI | MR | Zbl

[5] Topalov P., Matveev V. S., “Geodesic equivalence via integrability”, Geom. Dedic., 96 (2003), 91–115 | DOI | MR | Zbl

[6] Vermeire F., Sarlet W., Crampin M., “A class of recursion operators on a tangent bundle”, J. Phys. A: Math. Gen., 39 (2006), 7319–7340 | DOI | MR | Zbl