Antisymmetric Orbit Functions
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter–Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform). Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.
Keywords: antisymmetric orbit functions; signed orbits; products of orbits; orbit function transform; finite orbit function transform; finite Fourier transforms; finite cosine transforms; finite sine transforms; symmetric functions.
@article{SIGMA_2007_3_a22,
     author = {Anatoliy Klimyk and Jiri Patera},
     title = {Antisymmetric {Orbit} {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a22/}
}
TY  - JOUR
AU  - Anatoliy Klimyk
AU  - Jiri Patera
TI  - Antisymmetric Orbit Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a22/
LA  - en
ID  - SIGMA_2007_3_a22
ER  - 
%0 Journal Article
%A Anatoliy Klimyk
%A Jiri Patera
%T Antisymmetric Orbit Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a22/
%G en
%F SIGMA_2007_3_a22
Anatoliy Klimyk; Jiri Patera. Antisymmetric Orbit Functions. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a22/

[1] Klimyk A. U., Patera J., “Orbit functions”, SIGMA, 2 (2006), 006, 60 pp., ages ; math-ph/0601037 | MR | Zbl

[2] Patera J., “Orbit functions of compact semisimple Lie groups as special functions”, Proceedings of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics” (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, Kyiv, 50, no. 3, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, 2004, 1152–1160 | MR | Zbl

[3] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, Oxford, 1995 | MR | Zbl

[4] Macdonald I. G., “A new class of symmetric functions”, Séminaire Lotharingien, 20, I.R.M.A., Strasbourg, 1988, 131–171, 372/S-20

[5] Macdonald I. G., “Orthogonal polynomials associated with root systems”, Séminaire Lotharingien de Combinatoire, 45, Stracbourg, 2000, Art. B45a | MR

[6] Vilenkin N. Ja., Klimyk A. U., Representations of Lie groups and special functions: recent advances, Kluwer, Dordrecht, 1995 | MR

[7] Moody R. V., Patera J., “Elements of finite order in Lie groups and their applications”, Proceedings of XIII Int. Colloq. on Group Theoretical Methods in Physics, ed. W. Zachary, World Scientific Publishers, Singapore, 1984, 308–318 | MR

[8] McKay W. G., Moody R. V., Patera J., “Tables of $E_8$ characters and decomposition of plethysms”, Lie Algebras and Related Topics, eds. D. J. Britten, F. W. Lemire and R. V. Moody, Amer. Math. Society, Providence RI, 1985, 227–264 | MR

[9] McKay W. G., Moody R. V., Patera J., “Decomposition of tensor products of $E_8$ representations”, Algebras Groups Geom., 3 (1986), 286–328 | MR | Zbl

[10] Patera J., Sharp R. T., “Branching rules for representations of simple Lie algebras through Weyl group orbit reduction”, J. Phys. A: Math. Gen., 22 (1989), 2329–2340 | DOI | MR | Zbl

[11] Grimm S., Patera J., “Decomposition of tensor products of the fundamental representations of $E_8$”, Advances in Mathematical Sciences – CRM's 25 Years, CRM Proc. Lecture Notes, 11, ed. L. Vinet, Amer. Math. Soc., Providence, RI, 1997, 329–355 | MR | Zbl

[12] Rao K. R., Yip P., Disrete cosine transform – algorithms, advantages, applications, Academic Press, New York, 1990 | MR

[13] Atoyan A., Patera J., “Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization”, J. Math. Phys., 45 (2004), 2468–2491 ; math-ph/0309039 | DOI | MR | Zbl

[14] Patera J., Zaratsyan A., “Discrete and continuous cosine transform generalized to Lie groups $SU(2)\times SU(2)$ and $O(5)$”, J. Math. Phys., 46 (2005), 053514, 17 pp., ages | DOI | MR | Zbl

[15] Patera J., Zaratsyan A., “Discrete and continuous cosine transform generalized to Lie groups $SU(2)$ and $G_2$”, J. Math. Phys., 46 (2005), 113506, 25 pp., ages | DOI | MR | Zbl

[16] Atoyan A., Patera J., “Continuous extension of the discrete cosine transform, and its applications to data processing”, Group Theory and Numerical Analysis, CRM Proc. Lecture Notes, 39, Amer. Math. Soc., Providence, RI, 2005, 1–15 | MR | Zbl

[17] Atoyan A., Patera J., Sahakian V., Akhperjanian A., “Fourier transform method for imaging atmospheric Cherenkov telescopes”, Astroparticle Phys., 23 (2005), 79–95 ; astro-ph/0409388 | DOI

[18] Patera J., Zaratsyan A., Zhu H.-M., “New class of interpolation methods based on discretized Lie group transform”, SPIE Electronic Imaging, 2006, 6064A-06, S1

[19] Germain M., Patera J., Zaratsyan A., “Multiresolution analysis of digital images using the continuous extension of discrete group transform”, SPIE Electronic Imaging, 2006, 6065A-03, S2

[20] Germain M., Patera J., Allard Y., “Cosine transform generalized to Lie groups $SU(2)\times SU(2)$, $O(5)$, and $SU(2)\times SU(2)\times SU(2)$: application to digital image processing”, Proc. SPIE, 6065 (2006), 387–395

[21] Moody R. V., Patera J., “Computation of character decompositions of class functions on compact semisimple Lie groups”, Math. Comp., 48 (1987), 799–827 | DOI | MR | Zbl

[22] Patera J., Zaratsyan A., “Discrete and continuous sine transforms generalized to compact semisimple Lie groups of rank two”, J. Math. Phys., 47 (2006), 043512, 22 pp., ages | DOI | MR | Zbl

[23] Kashuba I., Patera J., Discrete and continuous exponential transforms of simple Lie groups of rank two, math-ph/0702016

[24] Kane R., Reflection groups and invariants, Springer, New York, 2002

[25] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990 | MR

[26] Humphreys J. E., Introduction to Lie algebras and representation theory, Springer, New York, 1972 | MR | Zbl

[27] Bremner M. R., Moody R. V., Patera J., Tables of dominant weight multiplicities for representations of simple Lie algebras, Marcel Dekker, New York, 1985 | MR | Zbl

[28] Kac V., Infinite dimensional Lie algebras, Birkhäuser, Basel, 1982 | MR

[29] Patera J., “Compact simple Lie groups and their $C$-, $S$-, and $E$-transforms”, SIGMA, 1 (2005), 025, 6 pp., ages ; math-ph/0512029 | MR | Zbl

[30] Weyl H., The classical groups, Princeton University Press, 1939 | MR

[31] Moody R. V., Patera J., “Orthogonality within the families of $C$-, $S$-, and $E$-functions of any compact semisimple Lie group”, SIGMA, 2 (2006), 076, 14 pp., ages ; math-ph/0611020 | MR | Zbl

[32] Mckay W. G., Patera J., Sannikoff D., “The computation of branching rules for representations of semisimple Lie algebras”, Computers in Nonassociative Rings and Algebras, eds. R.E. Beck and B. Kolman, Academic Press, New York, 1977, 235–278 | MR

[33] Zhelobenko D. P., Compact Lie groups and their representations, Nauka, Moscow, 1970 | MR | Zbl

[34] Strang G., “The discrete cosine transform”, SIAM Rev., 41 (1999), 135–147 | DOI | MR | Zbl

[35] Martuchi S. A., “Symmetric convolution and the discrete sine and cosine transforms”, IEEE Trans. Signal Process., 42 (1994), 1038–1051 | DOI

[36] Vilenkin N. Ja., Klimyk A. U., Representations of Lie groups and special functions, Vol. 2, Kluwer, Dordrecht, 1993 | MR | Zbl

[37] Karlin S., McGregor J., “Determinants of orthogonal polynomials”, Bull. Amer. Math. Soc., 68 (1962), 204–209 | DOI | MR

[38] Koornwinder T., “Two-variable analogues of the classical orthogonal polynomials”, Theory and Applications of Special Functions, ed. R. A. Askey, Academic Press, New York, 1975, 435–495 | MR

[39] Berens H., Schmid H., Xu Y., “Multivariate Gaussian cubature formulas”, Arch. Math., 64 (1995), 26–32 | DOI | MR | Zbl