@article{SIGMA_2007_3_a21,
author = {Andrew N. W. Hone},
title = {Laurent {Polynomials} and {Superintegrable} {Maps}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a21/}
}
Andrew N. W. Hone. Laurent Polynomials and Superintegrable Maps. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a21/
[1] Braden H. W., Enolskii V. Z., Hone A. N. W., “Bilinear recurrences and addition formulae for hyperelliptic sigma functions”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 46–62 ; math.NT/0501162 | DOI | MR | Zbl
[2] Bressoud D. M., Proofs and confirmations: the story of the alternating sign matrix conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[3] Bruschi M., Ragnisco O., Santini P. M., Tu G.-Z., “Integrable symplectic maps”, Phys. D, 49 (1991), 273–294 | DOI | MR | Zbl
[4] Buchholz R. H., Rathbun R. L., “An infinite set of heron triangles with two rational medians”, Amer. Math. Monthly, 104 (1997), 107–115 | DOI | MR | Zbl
[5] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, AMS Translations Series 2, 179, eds. V. M. Buchstaber and S. P. Novikov, AMS, 1997, 1–34 ; solv-int/9603005 | MR
[6] Cantor D., “On the analogue of the division polynomials for hyperelliptic curves”, J. Reine Angew. Math., 447 (1994), 91–145 | MR | Zbl
[7] Carroll G., Speyer D., “The cube recurrence”, Electron. J. Combin., 11:1 (2004), Paper 73, 31 pp. ; math.CO/0403417 | MR
[8] Common A., Hone A. N. W., Musette M., “A new discrete Hénon–Heiles system”, J. Nonlinear Math. Phys., 10, suppl. 2 (2003), 27–40 | DOI | MR
[9] Elaydi S., Discrete chaos, Chapman and Hall/CRC, Boca Raton, 2000 | MR | Zbl
[10] Einsiedler M., Everest G., Ward T., “Primes in elliptic divisibility sequences”, LMS J. Comput. Math., 4 (2001), 1–13 | MR | Zbl
[11] Everest G., Miller V., Stephens N., “Primes generated by elliptic curves”, Proc. Amer. Math. Soc., 132 (2003), 955–963 | DOI | MR
[12] Everest G., van der Poorten A., Shparlinski I., Ward T., Recurrence sequences, AMS Mathematical Surveys and Monographs, 104, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[13] Fedorov Y., “Bäcklund transformations on coadjoint orbits of the loop algebra $gl(r)$”, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 29–46 | DOI | MR
[14] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. Appl. Math., 28 (2002), 119–144 ; math.CO/0104241 | DOI | MR | Zbl
[15] Fomin S., Zelevinsky A., “Cluster algebras. IV. Coefficients”, Compos. Math., 143:1 (2007), 112–164 ; math.RA/0602259 | DOI | MR | Zbl
[16] Fordy A. P., Shabat A. B., Veselov A. P., “Factorization and Poisson correspondences”, Theor. Math. Phys., 105:2 (1995), 1369–1386 | DOI | MR | Zbl
[17] Gale D., “The strange and surprising saga of the Somos sequences”, Math. Intelligencer, 13:1 (1991), 40–42 | DOI | MR
[18] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Poisson geometry”, Moscow Math. J., 3 (2003), 899–934 ; math.QA/0208033 | MR | Zbl
[19] Grammaticos B., Ramani A., Papageorgiou V., “Do integrable mappings have the Painlevé property?”, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[20] Halburd R. G., “Diophantine integrability”, J. Phys. A: Math. Gen., 38 (2005), L263–L269 ; nlin.SI/0504027 | DOI | MR | Zbl
[21] Hietarinta J., Viallet C., “Singularity confinement and chaos in discrete systems”, Phys. Rev. Lett., 81 (1998), 325–328 ; solv-int/9711014 | DOI
[22] Hone A. N. W., “Non-autonomous Hénon–Heiles systems”, Phys. D, 118 (1998), 1–16 ; solv-int/9703005 | DOI | MR | Zbl
[23] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for the Hénon–Heiles and Garnier systems”, CRM Proceedings and Lecture Notes, 25, Amer. Math. Soc., 2000, 231–235 | MR | Zbl
[24] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for many-body systems related to KdV”, J. Phys. A: Math. Gen., 32 (1999), L299–L306 ; solv-int/9904003 | DOI | MR | Zbl
[25] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “B\a"{a}cklund transformations for the $sl(2)$ Gaudin magnet”, J. Phys. A: Math. Gen., 34 (2001), 2477–2490 ; nlin.SI/0007041 | DOI | MR | Zbl
[26] Hone A. N. W., “Exact discretization of the Ermakov–Pinney equation”, Phys. Lett. A, 263 (1999), 347–354 | DOI | MR | Zbl
[27] Hone A. N. W., “Elliptic curves and quadratic recurrence sequences Corrigendum”, Bull. Lond. Math. Soc., 38 (2006), 741–742 ; Bull. Lond. Math. Soc., 37 (2005), 161–171 | DOI | MR | DOI | MR | Zbl
[28] Hone A. N. W., “Sigma function solution of the initial value problem for Somos 5 sequences”, Trans. Amer. Math. Soc., 359:10 (2007), 5019–5034 ; math.NT/0501554 | DOI | MR | Zbl
[29] Hone A. N. W., “Diophantine non-integrability of a third-order recurrence with the Laurent property”, J. Phys. A: Math. Gen., 39 (2006), L171–L177 ; math.NT/0601324 | DOI | MR | Zbl
[30] Hone A. N. W., “Singularity confinement for maps with the Laurent property”, Phys. Lett. A, 361 (2007), 341–345 ; nlin.SI/0602007 | DOI | Zbl
[31] Hone A. N. W., Discrete dynamics, integrability and integer sequences, in preparation, Imperial College Press
[32] Kuznetsov V. B., Sklyanin E. K., “On B\a"{a}cklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl
[33] Kuznetsov V. B., Salerno M., Sklyanin E. K., “Quantum B\a"{a}cklund transformation for the integrable DST model”, J. Phys. A: Math. Gen., 33 (2000), 171–189 ; solv-int/9908002 | DOI | MR | Zbl
[34] Kuznetsov V. B., Vanhaecke P., “B\a"{a}cklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; nlin.SI/0004003 | DOI | MR | Zbl
[35] Kuznetsov V. B., Mangazeev V. V., Sklyanin E. K., “$Q$-operator and factorised separation chain for Jack polynomials”, Indag. Math., 14 (2003), 451–482 ; math.CA/0306242 | DOI | MR | Zbl
[36] Mills W. H., Robbins D. P., Rumsey H., “Alternating-sign matrices and descending plane partitions”, J. Combin. Theory Ser. A, 34 (1983), 340–359 | DOI | MR | Zbl
[37] Nekhoroshev N. N., “On action-angle variables and their generalizations”, Tr. Moscow Math. Soc., 26, 1972, 181–198 (in Russian) | MR | Zbl
[38] Pasquier V., Gaudin M., “The periodic Toda chain and a matrix generalization of the Bessel function recursion relations”, J. Phys. A: Math. Gen., 25 (1992), 5243–5252 | DOI | MR | Zbl
[39] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and B\a"{a}cklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37 (2004), 8495–8512 ; nlin.SI/0403028 | DOI | MR | Zbl
[40] Matsutani S., “Recursion relation of hyperelliptic PSI-functions of genus two”, Int. Transforms Spec. Func., 14 (2003), 517–527 ; math-ph/0105031 | DOI | MR | Zbl
[41] van der Poorten A. J., “Elliptic curves and continued fractions”, J. Integer Sequences, 8 (2005), Article 05.2.5, 19 pp., ages ; math.NT/0403225 | MR | Zbl
[42] van der Poorten A. J., Swart C. S., “Recurrence relations for elliptic sequences: every Somos 4 is a Somos $k$”, Bull. Lond. Math. Soc., 38 (2006), 546–554 ; math.NT/0412293 | DOI | MR | Zbl
[43] Propp J., “The many faces of alternating-sign matrices”, Discrete models: combinatorics, computation, and geometry, Disc. Math. Theoret. Comp. Sci. Proc. AA, MIMD, Paris, 2001, 43–58 ; math.CO/0208125 | MR | Zbl
[44] Propp J., The “bilinear” forum, http://www.math.wisc.edu~propp
[45] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations II”, Phys. D, 34 (1989), 183–192 | DOI | MR | Zbl
[46] Ramani A., Grammaticos B., Satsuma J., “Bilinear discrete Painlev\a'e equations”, J. Phys. A: Math. Gen., 28 (1995), 4655–4665 | DOI | MR | Zbl
[47] Robinson R., “Periodicity of Somos sequences”, Proc. Amer. Math. Soc., 116 (1992), 613–619 | DOI | MR | Zbl
[48] Silverman J. H., The arithmetic of elliptic curves, Springer, 1986 | MR
[49] Silverman J. H., “$p$-adic properties of division polynomials and elliptic divisibility sequences”, Math. Annal., 332 (2005), 443–471 ; Addendum 473–474 ; math.NT/0404412 | DOI | MR | Zbl
[50] Sloane N. J. A., On-line encyclopedia of integer sequences, sequence A006720 http://www.research.att.com/~njas/sequences
[51] Speyer D., Perfect matchings and the octahedron recurrence, , 2004 math.CO/0402452 | MR
[52] Suris Y. B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | MR | Zbl
[53] Swart C. S., Elliptic curves and related sequences, PhD thesis, Royal Holloway, University of London, 2003
[54] Swart C. S., Hone A. N. W., Integrality and the Laurent phenomenon for Somos 4 sequences, math.NT/0508094
[55] Takenawa T., “A geometric approach to singularity confinement and algebraic entropy”, J. Phys. A: Math. Gen., 34 (2001), L95–L102 ; nlin.SI/0011037 | DOI | MR | Zbl
[56] Vanhaecke P., Integrable systems in the realm of algebraic geometry, 2nd ed., Springer, 2005 | MR
[57] Veselov A. P., “Integrable maps”, Russ. Math. Surveys, 46 (1991), 1–51 | DOI | MR | Zbl
[58] Veselov A. P., “What is an integrable mapping?”, What is Integrability?, ed. V. E. Zakharov, Springer-Verlag, 1991, 251–272 | MR | Zbl
[59] Veselov A. P., “Growth and integrability in the dynamics of mappings”, Comm. Math. Phys., 145 (1992), 181–193 | DOI | MR | Zbl
[60] Veselov A. P., Shabat A. B., “A dressing chain and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27 (1993), 1–21 | DOI | MR | Zbl
[61] Ward M., “Memoir on elliptic divisibility sequences”, Amer. J. Math., 70 (1948), 31–74 | DOI | MR | Zbl
[62] Ward M., “The law of repetition of primes in an elliptic divisibility sequence”, Duke Math. J., 15 (1948), 941–946 | DOI | MR | Zbl
[63] Weiss J., “Periodic fixed points of B\a"{a}cklund transformations and the Korteweg–de Vries equation”, J. Math. Phys., 27 (1986), 2647–2656 | DOI | MR | Zbl
[64] Wojciechowski S., “Superintegrability of the Calogero–Moser system”, Phys. Lett. A, 95 (1983), 279–281 | DOI | MR
[65] Yuzbashyan E. A., Kuznetsov V. B., Altshuler B. L., “Integrable dynamics of coupled Fermi–Bose condensates”, Phys. Rev. B, 72 (2005), 144524, 9 pp., ages ; cond-mat/0506782 | DOI
[66] Yuzbashyan E. A., Altshuler B. L., Kuznetsov V. B., Enolskii V. Z., “Nonequilibrium Cooper pairing in the nonadiabatic regime”, Phys. Rev. B, 72 (2005), 220503(R), 4 pp., ages ; cond-mat/0505493 | DOI
[67] Zagier D., Problems posed at the St. Andrews Colloquium, 1996, Solutions, 5th day, available at http://www-groups.dcs.st-and.ac.uk/~john/Zagier/Problems.html
[68] Zabrodin A., “A survey of Hirota's difference equations”, Teor. Mat. Fiz., 113:2 (1997), 179–230 (in Russian) ; solv-int/9704001 | MR