@article{SIGMA_2007_3_a20,
author = {Claudia Chanu and Giovanni Rastelli},
title = {Eigenvalues of {Killing} {Tensors} and {Separable} {Webs} on {Riemannian} and {Pseudo-Riemannian} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a20/}
}
TY - JOUR AU - Claudia Chanu AU - Giovanni Rastelli TI - Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a20/ LA - en ID - SIGMA_2007_3_a20 ER -
%0 Journal Article %A Claudia Chanu %A Giovanni Rastelli %T Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a20/ %G en %F SIGMA_2007_3_a20
Claudia Chanu; Giovanni Rastelli. Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a20/
[1] Benenti S., “Separability structures on Riemannian manifolds”, Differential geometrical methods in mathematical physics, Lecture Notes in Math., 863, 1980, 512–538 | MR
[2] Benenti S., “Separation of variables in the geodesic Hamilton–Jacobi equation”, Progr. Math., 9 (1991), 1–36 | MR
[3] Benenti S., “Inertia tensors and Stäckel systems in the Euclidean spaces”, Rend. Semin. Mat. Univ. Polit. Torino, 50 (1992), 315–341 | MR | Zbl
[4] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[5] Benenti S., Separability in Riemannian manifolds (to appear)
[6] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schroedinger equation. 1. The completeness and the Robertson conditions”, J. Math. Phys., 43 (2002), 5183–5222 | DOI | MR | Zbl
[7] Benenti S., Chanu C., Rastelli G., “Variable separation theory for the null Hamilton–Jacobi equation”, J. Math. Phys., 46 (2005), 042901, 29 pp., ages | DOI | MR | Zbl
[8] Błaszak M., “Separable bi-Hamiltonian systems with quadratic in momenta first integrals”, J. Phys. A: Math. Gen., 38 (2005), 1667–1685 ; nlin.SI/0312025 | DOI | MR
[9] Bolsinov A. V., Matveev V. S., “Geometrical interpretation of Benenti systems”, J. Geom. Phys., 44 (2003), 489–506 | DOI | MR | Zbl
[10] Chanachowicz M., Chanu C., McLenaghan R. G., Invariant classification of the symmetric $R$-separable webs in $\mathbb E_3$, in progress
[11] Chanu C., Rastelli G., “Eigenvalues of Killing tensors and orthogonal separable webs”, Proceedings of the International Conference STP2002 “Symmetry and Perturbation Theory” (May 19–24, 2002, Cala Gonone), eds. S. Abenda, G. Gaeta and S. Walcher, World Scietific Publishing, Singapore, 2002, 18–25 | MR
[12] Chanu C., Rastelli G., “Fixed energy $R$-separation for Schrödinger equation”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 489–508 ; nlin.SI/0512033 | DOI | MR | Zbl
[13] Degiovanni L., Rastelli G., Complex variables for separation of Hamilton–Jacobi equation on real pseudo-Riemannian manifolds, nlin.SI/0610012 | MR
[14] Degiovanni L., Rastelli G., Complex variables for separation of Hamilton–Jacobi equation on three-dimensional Minkowski space, Int. J. Geom. Methods Mod. Phys., to appear
[15] Grigoryev Yu. A., Tsiganov A. V., “Symbolic software for separation of variables in the Hamilton–Jacobi equation for the L-systems”, Regul. Chaotic Dyn., 10 (2005), 413–422 ; nlin.SI/0505047 | DOI | MR
[16] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific and Technical, New York, 1986 | MR | Zbl
[17] Kalnins E. G., Miller W. Jr., “Killing tensors and variable separation for the Hamilton–Jacobi and Helmholtz equations”, SIAM J. Math. Anal., 11 (1980), 1011–1026 | DOI | MR | Zbl
[18] Kalnins E. G., Miller W. Jr., “Conformal Killing tensors and variable separation for HJEs”, SIAM J. Math. Anal., 14 (1983), 126–137 | DOI | MR | Zbl
[19] Kalnins E. G., Miller W. Jr., “Intrinsic characterisation of orthogonal $R$-separation for Laplace equation”, J. Phys. A: Math. Gen., 15 (1982), 2699–2709 | DOI | MR | Zbl
[20] Moon P., Spencer D. E., Field theory handbook, Springer Verlag, Berlin, 1961 | MR | Zbl
[21] Rauch-Wojciechowski S., Waksjö C., “How to find separation coordinates for the Hamilton–Jacobi equation: a criterion of separability for natural Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 301–348 | DOI | MR | Zbl